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1. Introduction

There are several motivations for the recent interest on the boundary of wave type space-

times. Firstly, there are important reasons for string theory, because of the AdS/CFT

correspondence of plane waves and the holographic role of its boundary. But there are also

reasons from the viewpoint of General Relativity, apart from the obvious interest in the

properties of a classical spacetime. In fact, the old problem on the consistency of causal

boundaries and its relation with conformal boundaries is put forward by pp-waves and

stimulates its full solution. Very roughly, the main results can be summarized as follows

(see also references therein):

• Plane waves yield exact backgrounds for string theory as all their scalar curvature

invariants vanish. Thus, they correspond to exact conformal theories, and in some

cases can be explicitly quantized [1, 29, 39].

• Taking into account the well-known result that any spacetime has a plane wave

as a limit along any lightlike geodesic (Penrose, [44]), Berenstein, Maldacena and

Nastase [5] related string theory on maximally supersymmetric 10 dimensional plane

waves to 4 dimensional field theory.

• More precisely, Penrose limit on a lightlike geodesic on AdS5 × S5, which rotates

on the S5 was considered. Blau, Figueroa-O’Farrill, Hull and Papadopoulos [9] con-

structed the limit plane wave and identified its dual in the field theory. Berenstein

and Nastase [6] studied the asymptotic conformal boundary of this plane wave, find-

ing that it is 1-dimensional. This fact not only was not regarded as pathological,

but it suggested that such a plane wave possesses a holographic dual description in

terms of quantum mechanics on its boundary –a similar picture to CFT dual to an

asymptotically AdS space.

• Marolf and Ross [36] studied the causal boundary of that plane wave. There are

interesting reasons to use this more sophisticated boundary. On one hand, it is in-

trinsic to the spacetime and systematically determined. On the other, this approach

is applicable to any plane wave or spacetime, not only to conformally flat ones. Essen-

tially, these authors reobtained the 1-dimensional character for the causal boundary

of Berenstein and Nastase’s, and, surprisingly, obtained other relevant cases of plane

waves with this same behavior (as it was independent on the number of positive

eigenvalues for the quadratic form F , assuming the existence of at least one). What

is more, their results suggested a redefinition of classical causal boundary [37], as this

old concept was known to have some undesirable properties.

• In [19] the authors studied systematically the causal structure of wave-type space-

times (the general family (2.1) below). We showed that this structure depends dra-

matically on the value of the characteristic coefficient F of the metric. In particular,

when F is “at most quadratic” (as in classical plane waves) the spacetime becomes

strongly causal, but when it is “superquadratic” the wave is non-distinguishing and
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the causal boundary makes no sense. Hubeny, Rangamani and Ross [33] pointed out

that this is the case of the pp-wave which gives rise to the N = 2 sine-Gordon

string world-sheet; moreover, they also studied other properties on causality (as

the existence of time functions) and boundaries for some specific pp-wave back-

grounds [30, 32 – 34].

There are also two technical questions which are worth of pointing out here. First, the

systematic study of the causal boundary in [18], starting at the cited original idea [37],

which seems to yield a definitive answer to the problem of the identifications between

future and past ideal points, as well as an appropriate topology on the boundary. Second,

the solution of the so-called “folk problems of smoothability” which yield consistency to

the full causal ladder of causality, including the equivalence between stable causality and

the existence of a time function [7, 42, 8].

The aim of the present article is to study systematically the causal boundary of wave-

type spacetimes. Recall that, essentially, Marolf and Ross [36, 37] studied locally symmetric

plane waves (F (x, u) ≡ F (x), F quadratic form), and Hubeny and Rangamani [30] studied

particular cases of plane waves, as well as some pp-waves, extracting some heuristic con-

clusions. But more precise and general results about the structure of the boundaries are

missing there.

Summing up, our motivation is threefold: first to conclude the study in [36, 30],

originated by applications on strings, second to conclude the study of causality of pp-wave

type spacetimes initiated in [19, 13], and third to check and support the new concept of

causal boundary in [37, 18]. Our approach can be summarized as follows.

In section 2 we introduce the general class of wave-type spacetimes, namely Mp-waves

M = M ×R
2, to be considered. Other properties of these spacetimes (geodesics, complete-

ness, causal hierarchy) were studied in [13, 19]; some changes of notation are made here.

In section 3 the framework of causal boundaries is introduced. First, the original

Geroch, Kronheimer and Penrose (GKP) boundary of TIP’s and TIF’s [24] is recalled

section 3.1. The recent progress on this boundary [37, 18] applicable here is summarized

in section 3.2. This includes the characterization of ideal points as certain pairs (P,F ) of

TIP’s and TIF’s (which involves their common futures and pasts ↑ P, ↓ F ), the induced

causal relation and the topology of the boundary. Finally, a simple, but general, technical

property of TIP’s and TIF’s is proved in section 3.3. Essentially, this property means that

TIP’s and TIF’s can be regarded as pasts or futures of certain (non necessarily geodesic)

inextendible lightlike curves (proposition 2); its version for Mp-waves (corollary 1) will

simplify the functional approach to be used later.

In section 4 we introduce an arrival time function with analogies to classical Fermat’s

one [45]. This function allows to introduce a functional J∆u
u0

in the space of curves on the

spatial M part (essentially, in the set of curves x(u) which connect each two prescribed

points x0, x1 ∈ M parametrized by the “u-quasitime” u ∈ [u0, u0 + ∆u], where (x, u, v) ∈
M ×R

2). The infimum of J∆u
u0

characterizes which points can be causally joined with each

(x0, u0, v0) ∈ M. This approach, on one hand, allows to introduce techniques and results

from functional analysis (some required ones will be developed in the appendix). On the
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other, it clarifies the causal structure of Mp-waves; for example, the inexistence of horizons

(claimed in [31] and strongly supported in [20]) becomes now apparent (remark 2).

In section 5 we introduce two technical conditions (H1), (H2) on the Mp-wave in

terms of functional J (definition 2), and relate them to the qualitative behavior of the

characteristic metric coefficient F . Very roughly, the idea is as follows. Each M -curve x

determines univocally a lightlike curve type (x(u), u, v(u)), u ∈ [u0, u0 + ∆u]. Assume that

the lightcones become opened fast along the lightlike curves generated in one M -direction

(or even just along a sequence {xm}m of M -loops). Due to the structure of the Mp-wave,

if this happens for arbitrarily small values of ∆u (as formally expresses (H2)) then the

future of all the points (x, u, v) with the same u = u0 collapses. So, the Mp-wave will be

non-distinguishing, and no causal boundary can be defined. Now, assume that the Mp-

wave is causally well-behaved and, so, this property does not hold for arbitrarily small ∆u.

If the property still holds for values of ∆u greater than some constant ∆0 > 0 (as expresses

(H1)), then the collapse will happen at the level of the TIP’s, i.e.: lightlike curves with

unbounded coordinate u will generate the same ideal points i+, i−.

As conditions (H1), (H2) are formulated directly on the functional, they become

very technical. Nevertheless, we also define the typical behaviors of F at infinity: super,

at most, and sub quadratic (these are general bounds on the growth of F (·, u), depending

arbitrarily on u) as well as λ-asymptotically quadratic (such a bound is also restrictive on

u). We showed in [19] how some of these behaviors determine the position in the causal

ladder of the Mp-wave. Now, we show (lemmas 4, 5) how some of them (superquadratic,

λ-asymptotically quadratic with λ > 1/2) yield naturally conditions (H2), (H1), which

will determine its boundary. The results are very accurate, as shown by the bound λ > 1/2,

which comes from Sturm-Liouville theory (see remark 5 and section 9.1). Nevertheless, we

emphasize that the technical behaviors (H1), (H2) involve only some M -direction. Thus,

one can easily yield results more general than stated. In fact, in lemma 5(ii) condition

(H1) is proved for (non-necessarily locally symmetric) plane waves such that one of the

eigenvalues of F is positive; this lies in the core of the surprising result by Marolf and

Ross [36] cited above.

In section 6 we prove how (H2) forbids the Mp-wave to be distinguishing (section 6.1).

This may be somewhat unexpected, and some examples in [30] are revisited (section 6.2).

In section 7 the explicit construction of the ideal points for any strongly causal Mp-

wave is carried out. This is done in full generality in section 7.1, where the main result

(theorem 2) is expressed in terms of two “Busemann type functions” b± previously intro-

duced (propositions 4, 5). Notice that Busemann functions appear naturally when TIP’s or

TIF’s are computed in simple (standard static) spacetimes, [26]. Now, the more elaborated

function b− plays a similar role to such a Busemann function, and the new function b+ is

introduced to deal with the sets ↑ P, ↓ F required for the total causal boundary [37, 18].

Moreover (section 7.2), when |F | is at most quadratic (and, thus, M is necessarily strongly

causal) and M complete, a special simplification of the terminal sets P,F, ↑ P, ↓ F occurs.

(We emphasize the necessity of the at most quadratic behavior for |F |, which was dropped

in previous literature, remark 8.) In fact, a natural lightlike ideal line in each boundary

∂̂M, ∂̌M (parametrized by u∞, |u∞| < ∞ in theorem 3, remark 9) appears. Nevertheless,
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the boundary ∂M may be higher dimensional, because the lightlike curves with unbounded

coordinate u (|u∞| = ∞) may still generate infinitely many ideal points.

However, in section 8 we show that, when additionally (H1) holds, then all (future)

lightlike curves with u ր ∞ generate the same ideal point i+, so a 1-dimensional boundary

is expected (section 8.1). In particular, when F is λ-asymptotically quadratic with λ > 1/2

the boundary is two copies of a 1-dimensional lightlike line, with some eventual identifica-

tions (section 8.2). Moreover the special case of plane waves is compared carefully with

previous results and techniques (remark 11 and below).

In section 9 we consider subquadratic F ’s and emphasize the critical character of

the 1-dimensional boundary. Recall that, essentially, such a boundary corresponds to

a (λ > 1/2)-asymptotically quadratic behaviour of F , and the boundary makes no sense

under a faster (superquadratic) growth. In section 9.1 we construct an explicit example with

higher dimensional boundary in the limit case λ = 1/2. So, the 1-dimensional boundary

can no longer be expected.

Higher dimensionality is expected specially in the (globally hyperbolic) subquadratic

case section 9.2. Notice that the case M = R
n, F ≡ 0 corresponds to Lorentz-Minkowski

L
n+2 (for arbitrary M , corresponds to a standard static spacetime). If |F (·, u)| is up-

per bounded for each u, then the spacetime becomes “isocausal” (in the sense of Garćıa-

Parrado and Senovilla [22]) to L
n+2 and, thus, the causal boundary is expected to be

(n + 1)-dimensional.

Finally, in section 9.3 we discuss and extend Marolf and Ross’ result [36, section 3.1]

for plane waves with negative eigenvalues. Concretely, we reobtain that the Mp-wave is

conformal to a region of L
n+2 bounded by two lightlike hyperplanes, even when F depends

on u. Nevertheless, a discussion shows that the causal and conformal boundaries differ

in this case: the former has two connected pieces (a future boundary and a past one);

the latter, which is necessarily compact, is connected and includes implicitly properties at

spacelike infinity (compare with [38]).

We finish emphasizing some conclusions in section 10, including a table of results, and

providing some technical bounds on some functionals in the appendix. Along the paper,

four figures have been also included as a guide for the reader.

2. Wave-type spacetimes

The authors, in collaboration with A.M. Candela, introduced and studied systemati-

cally [13, 19, 20] the following class of spacetimes, which widely generalize classical pp-waves

(and, thus, plane waves):

(M, 〈·, ·〉L) M = M × R
2

〈·, ·〉L = 〈·, ·〉 − F (x, u) du2 − 2 du dv.
(2.1)

Here (M, 〈·, ·〉) is any smooth Riemannian (C∞, positive-definite, connected) n-manifold,

the variables (u, v) are the natural coordinates of R
2 and F : M × R → R is any smooth

scalar field. M will not be assumed to be complete a priori, and will be said unbounded if

it is non-compact with points at arbitrary long distances (i.e., it has infinite diameter).
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These spacetimes were named just PFW (“plane fronted waves”) in some previous ref-

erences but, according to the more careful notation in the survey [23], they will be consid-

ered as (a type of) Mp-waves. We also introduce some changes of conventions and notations

in order to make a better comparison with references such as [36, 30, 47]. In particular,

function F here replaces −H in previous references. We will choose once for ever a point

x̄ ∈ M . Then, if d is the natural distance associated to the Riemannian metric 〈·, ·〉, we put

|x| = d(x, x̄) ∀x ∈ M. (2.2)

Elementary properties of these spacetimes are the following. Vector field ∂v is parallel

and lightlike, and the time-orientation will be chosen to make it future-directed. Thus, for

any future-directed causal curve γ(s) = (x(s), u(s), v(s)), s ∈ I (I interval)

u̇(s) = −〈γ̇(s), ∂v〉L ≥ 0, (2.3)

being the inequality strict if γ(s) is timelike (and analogously for a past-directed curve).

Using this inequality and the fact that ∇u = −∂v, it follows that any such Mp-wave is

causal. The slices u ≡ constant are degenerate, with radical Span ∂v. Then, all the hyper-

surfaces (non-degenerate n-submanifolds of M) of one such a slice which are transverse to

∂v , become isometric to open subsets of M . The fronts of the wave (2.1) will be defined as

the (whole) slices at constant u, v.

3. The causal boundary of spacetimes

We refer to well-known references such as [43, 2, 27, 51] and specially the recent review [42]

for notation and background on causality. For the specific approach on causal boundaries,

we refer to [18] and references therein.

3.1 Classical approach

Let M ≡ (M, g) be a spacetime, endowed with a time-orientation (implicitly assumed)

and, thus, the causal ≤ (strict causal <) and chronological ≪ relations. As usual, causal

elements in any open subset U ⊆ M, regarded as a spacetime in its own right, will be

denoted such as <U , J+(p, U), etc. A continuous curve γ : [0, b) → M is called future-

directed causal if, for each s ∈ [0, b), there exists a convex neighborhood (i.e. a (starshaped)

normal neighborhood of all its points) U of γ(s) such that, whenever s′ ∈ (s, b) (resp.

s′ ∈ [0, s)) satisfies that γ([s, s′]) (resp. γ([s′, s])) is included in U , then γ(s) <U γ(s′)

(resp. γ(s′) <U γ(s)). It is well-known that, up to a reparametrization, such curves

are locally Lipschitzian as well as other properties [14, appendix], [42, section 3.5]. This

definition (and related properties) are naturally extended not only to the past case, but

also to other domains for γ different to [0, b); definitions are also extended to timelike

curves, with no further mention. A (future or past-directed) causal curve γ : [0, b) → M is

piecewise smooth if there exists a sequence {si} ր b, s0 = 0 such that γ is smooth on each

interval [si, si+i] for all i. Notice that, at any (possibly non-smooth) break γ(si), i > 0,

there are two limit derivatives γ̇(s−i ), γ̇(s+
i ), which are causal vectors in the same cone. A

piecewise smooth geodesic will be called a broken geodesic.
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Roughly, the main purpose of the causal completion of a spacetime is to make inex-

tendible timelike curves to end at some point.1 So, ‘ideal points’ are added to the spacetime,

in such a way that any timelike curve has some endpoint in the new extended space (at

the original manifold or at an ideal point). To this aim, there will not be any difference

if the (timelike) curves are required to be smooth, piecewise smooth or continuous. So, in

what follows, all the curves will be piecewise smooth, except when otherwise is said explic-

itly. The natural level in the causal hierarchy of spacetimes required for the completion of

(M, g) is strong causality. In fact, to be (pointwise future or past) distinguishing will be a

minimum property in order to recover the points of M from the general construction, but

strong causality will be necessary to recover the topology too, as well as for other technical

properties.

In order to describe the completion procedure some terminology is required first. A

subset P ⊆ M is called a past set if it coincides with its chronological past I−[P ], that is,

P = I−[P ] := {p ∈ M : p ≪ q for some q ∈ P}. Given a subset S ⊆ M, we define the

common past of S as ↓ S := I−[{p ∈ M : p ≪ q ∀q ∈ S}]. Notice that I−[P ] is always

open, and we have chosen the definition of ↓ S in order to make it open too. A non-empty

past set that cannot be written as the union of two proper subsets, both of which are also

past sets, is called indecomposable past set, IP. An IP which does coincide with the past

of some point in M is called proper indecomposable past set, PIP and, otherwise, terminal

indecomposable past set, TIP. Of course, by replacing the word ‘past’ by ‘future’ we obtain

the corresponding notions for future set, common future, IF, PIF and TIF.

To construct the future causal completion, firstly identify every event p ∈ M with its

PIP, I−(p). Then, define the future causal boundary ∂̂M of M as the set of all TIPs in

M. Therefore, the future causal completion M̂ becomes the set of all IPs:

M ≡ PIPs, ∂̂M ≡ TIPs, M̂ ≡ IPs.

Analogously, every event p ∈ M can be identified with its PIF, I+(p), then the past causal

boundary ∂̌M of M is the set of all TIFs in M and thus, the past causal completion M̌ is

the set of all IFs:

M ≡ PIFs, ∂̌M ≡ TIFs, M̌ ≡ IFs.

In order to define the (total) causal completion, the space M̂ ∪ M̌ appears obviously.

However, it becomes evident that, in order to obtain a reasonably consistent definition:

(a) PIP’s and PIF’s must be identified in an obvious way (I−(p) ∼ I+(p) on M̂ ∪ M̌ for

all p ∈ M), and (b) the resulting space M♯ does not provide a satisfactory description

of the boundary of M, because this procedure often attaches two ideal points where we

would expect only one (consider the boundary for the interior of a (n − 1)-rectangle in

Lorentz-Minkowski L
n: each point at any timelike side determines naturally both, a TIP

and a TIF). There have been many attempts to define additional identifications between

elements of ∂̂M∪ ∂̌M in order to overcome this problem [24, 11, 46, 49, 50], but without

totally satisfactory results up to now.

1In this sense, the name of chronological completion would be more appropriate (as in [18]). Nevertheless,
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Figure 1: Overall causality framework

3.2 A recent new approach

An alternative procedure to making identifications consists of forming pairs composed by

past and future indecomposable sets of M. This approach, firstly introduced by Marolf and

Ross [37], and widely developed in [18], has exhibited satisfactory results for the spacetimes

analyzed up to date, and seems specially well-adapted to those ones analyzed in [36, 30];

so, we will adopt this approach in this paper. Even though, as emphasized in [18], there

are different choices for the meaning of the total causal boundary once the pairs have been

defined, they coincide in most cases and, in particular, in the relevant cases considered here.

Let P (resp. F ) be an IP (resp. IF). We say that P is S-related (Szabados related)

to F , namely P ∼S F , if P is maximal as IP into ↓ F and F is maximal as IF into ↑ P .

A TIP P can be S-related with more than one TIF F1, F2 (take P = {(x, t) : |x| < −t}
in M = L

2\{(0, t) : t ≥ 0}) or viceversa. Nevertheless, this will not happen in our study

(remark 9). Therefore, according to [18, 37], the (total) causal completion M is defined

in this case as: the set of pairs (P,F ) where P (resp. F ) is either a IP (resp. IF) or the

empty set and one of the following possibilities happens: (a) P ∼S F , (b) F 6= P = ∅ and

there is no P ′ such that P ′ ∼S F , or (c) P 6= F = ∅ and there is no F ′ such that P ∼S F ′.

The (total) causal boundary is the subset ∂M ⊂ M containing the pairs (P,F ) such that

P is not a PIP (and, thus, F is not a PIF [49, proposition 5.1]).

With this definition at hand, it is easy to extend the chronological relation ≪ to the

completion M: (P,F ) is chronologically related to (P ′, F ′), namely (P,F ) ≪ (P ′, F ′), if

F ∩P ′ 6= ∅. The properties and absence of problems for this choice are well established [18];

here we will maintain the term causal completion to emphasize that some causal elements have been

introduced, and in close correspondence with previous literature such as [36, 30].
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nevertheless, it is not so easy to give a definitive extension of the causal relation. As the

boundary of some waves is sometimes claimed to be null in a rather intuitive way, we will

adopt here simple definitions which will formalize this, and postpone to future work other

subtleties in more general cases. We say that (P,F ) is causally related to (P ′, F ′), namely

(P,F ) ≤ (P ′, F ′), if F ′ ⊆ F and P ⊆ P ′, at least one of them not trivially (i.e., without

involving the empty set, P 6= ∅ or F ′ 6= ∅). This is a canonical choice to define a causal

relation from a chronological one (taken also in [37]; see [42, definition 2.22, theorem 3.69]

for a discussion). If we only impose that one of these two inclusions hold (not trivially),

we will say (P,F ) is weakly causally related to (P ′, F ′), written (P,F ) ≤w (P ′, F ′). It

is easy to check that the latter definition does not imply the former one (consider in

L
2\{(x, t) ∈ R

2 : x ≤ 0} the ideal point associated to (0, 0) and the pair associated to the

point (−1, 1)). Finally, (P,F ) and (P ′, F ′) are (weakly) horismotically related if they are

(weakly) causally, but not chronologically, related.

The topology of the spacetime can be also extended to the completion. We will adopt

the chronological topology introduced in [18]. This topology is defined in terms of the

following limit operator L: given a sequence σ = {(Pn, Fn)} ⊂ M and (P,F ) ∈ M, we say

that (P,F ) ∈ L(σ) if2

P ∈ L̂(Pn) := {P ′ ∈ M̂ : P ′ ⊆ LI(Pn) and P ′ is maximal IP into LS(Pn)}
F ∈ Ľ(Fn) := {F ′ ∈ M̌ : F ′ ⊆ LI(Fn) and F ′ is maximal IF into LS(Fn)}

(recall that either P or F can be empty, but not both). Then, the closed sets for the chrono-

logical topology are those subsets C ⊆ M such that L(σ) ⊆ C for any sequence σ in C.

3.3 TIP’s as past of lightlike curves

In order to study the pairs in ∂M, it is well-known that any TIP, P , of a strongly causal

spacetime can be regarded as I−[ρ] for some inextendible future-directed timelike curve ρ

(see, for example, [2, proposition 6.14]) and analogously for TIF’s. Moreover, in this case,

it is ↑ ρ =↑ I−[ρ]. Our aim is to show that lightlike broken geodesics are also enough.

Remark 1. As a previous technicality, recall that when γ is lightlike, then ↑ γ =↑ I−[γ]

does not necessarily hold: take γ(s) = (s, s), s < 0 in L
2\{(0, t) : t ≥ 0}).

Nevertheless, this property is ensured when the easily checkable condition γ ⊂ I−[γ]

holds.

Proposition 1. Let γ : [0, b) → M be a future-directed (right) inextendible lightlike curve

in the strongly causal spacetime M. If γ ⊂ I−[γ] then P = I−[γ] is a TIP and ↑ γ =↑ P .

Proof. Take a sequence {si} ր b. The assumption on γ implies the existence of a subse-

quence {sik}k such that γ(sik) ≪ γ(sik+1
) for all k. Thus, joining each pair of points by

2By LI and LS we mean the usual inferior and superior limits of sets: i.e. LI(An) ≡ lim inf(An) :=

∪∞

n=1 ∩∞

k=n Ak and LS(An) ≡ lim sup(An) := ∩∞

n=1 ∪∞

k=n Ak. This definition is naturally extended when

the range of n is not the set of natural numbers, but a totally ordered set such as the interval [0, b) (this

permits to say when a curve γ tends to a boundary point (P, F ) without using sequences).
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means of a future-directed timelike curve, a piecewise smooth inextendible timelike curve

ρ is obtained. Clearly, I−[ρ] = I−[γ] (and thus, a TIP), ↑ γ =↑ ρ(=↑ I−[ρ]), and the result

follows.

Proposition 2. Let ρ : [0, b) → M be a future-directed causal curve. Then, for any

sequence {si} ր b, s0 ≥ 0 there exists a broken future-directed lightlike geodesic (with no

conjugate points in each unbroken piece) γ : [0, b) → M such that γ(si) = ρ(si) for all i

and, thus:

I−[ρ] = I−[γ], ↑ ρ =↑ γ.

Even more, if (a) dimM ≥ 3, (b) X is any lightlike geodesic vector field and (c) the

restriction of ρ to any open interval is not an integral curve of X (up to reparametrization),

then γ can be chosen such that γ̇(s) is linearly independent of Xγ(s) for all s ∈ [0, b). In

particular, this holds if ρ is timelike; moreover, in this case γ ⊂ I−[γ].

For the proof, notice first:

Lemma 1. For each s ∈ [0, b) (resp. s ∈ (0, b)) there exists some ǫ > 0 such that, if

s′ ∈ (s, s + ǫ) (resp. s′ ∈ (s− ǫ, s)) then ρ(s) and ρ(s′) can be joined with a broken lightlike

geodesic as in proposition 2 with only one break.

Proof. (Reasoning just for the case s′ > s). Let U be a convex neighborhood of p = ρ(s).

It is known that there exists a globally hyperbolic neighborhood Ũ ∋ p, Ũ ⊂ U which

is causally convex in U (i.e., such that any causal curve in U with endpoints in Ũ is

entirely contained in Ũ), see [42]. Notice that E+(p, Ũ) = ∂J+(p, Ũ). Let ǫ > 0 such that

ρ([s, s + ǫ]) ⊂ Ũ . For any s′ ∈ (s, s + ǫ], any past-directed lightlike geodesic β starting at

p′ = ρ(s′) must cross E+(p, Ũ) at some point q (recall that β cannot remain imprisoned

in the compact set J+(p, Ũ) ∩ J−(p′, Ũ); notice also that, eventually, q = p′ or q = p may

hold if ρ is lightlike). Thus, the unique (up to reparametrization) broken lightlike geodesic

γ in Ũ which goes from p to q and then to p′ is the required one.

Even more, in the case dimM ≥ 3 and X geodesic, there are at most two such broken

geodesics γ1, γ2 which connect p, p′ and are integral curves of X at some point (if they

existed, one of them γ1 would be obtained by taking β as the integral curve of X through

p′, and the other one γ2, analogously starting with an integral curve from p). Thus, it is

enough to construct γ by choosing β in a direction different to the velocities of γ1 and γ2

on p′. The remainder for the case ρ timelike is straightforward.

Proof of proposition 2. Each interval [si, si+1] can be covered by open subsets type (s −
ǫ, s+ǫ), (si+1−ǫ, si+1], [si, si +ǫ), with ǫ satisfying the properties of lemma 1. Now, choose

δ small enough to make each (s− δ, s + δ)∩ [si, si+1] included in one of these open subsets

(i.e., δ is taken smaller than a Lebesgue number of the covering) with si+1 = si + kiδ for

some positive integer ki. Then, the result follows by joining each ρ(si +kδ), ρ(si +(k+1)δ),

(for k = 0, 1, . . . , ki − 1 and all i), as in lemma 1.

In the case of Mp-waves, broken lightlike geodesics as in proposition 2 for X = ∂v will

be chosen. Summing up, the following result (and its analog for the future case) will be

used systematically.
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Corollary 1. Let M be a strongly causal Mp-wave and P be a TIP. Then, there exists an

inextendible future-directed lightlike curve γ (in fact, a broken geodesic without conjugate

points) at no point proportional to ∂v, such that P = I−[γ] and ↑ P =↑ γ.

Conversely, if γ is any inextendible future-directed causal curve with γ ⊂ I−[γ] then

P = I−[γ] is a TIP and ↑ P =↑ γ.

4. Fermat’s arrival function and functional approach

Vector field ∂v allows to define an “arrival function” analogous to classical Fermat’s time

arrival one, as well as an associated functional. In order to carry out the analogy, consider

first the simple case of a product spacetime3 (S × R, g = gS − dt2), where (S, gS) is a

Riemannian manifold and ∂t points out to the future. (Notice that, if F ≡ 0, a Mp-

wave can be regarded as one such product spacetime with S = M × R, after a change

of the coordinates u, v.) Let x0, x1 ∈ S,∆ > 0. For any piecewise smooth curve y :

[0,∆] → S with endpoints y(0) = x0, y(∆) = x1 a unique future-directed lightlike curve

γ(t) = (y(s(t)), t), t ∈ [0, T ] can be constructed, being s(t) and T = T [y] determined by

g(γ̇, γ̇) ≡ 0, s(0) = 0, s(T ) = ∆. So, if C ≡ C(x0, x1;∆) denotes the set of all such curves

y = y(s), a functional

J : C → R, y 7→ T [y]

is obtained. Now, consider the (future) time arrival map

T : S × S → R, (x0, x1) 7→ T (x0, x1) := InfCJ .

Easily, one has:

(x0, t0) ≪ (x1, t1) ⇔ T (x0, x1) < t1 − t0.

In fact, T (x0, x1) is the (Fermat) minimum arrival time of a future-directed lightlike curve

from (x0, 0) to the line {x1} × R. Notice that in this simple case function T is always

finite and continuous, and essentially the same function is obtained if past-directed causal

curves are taken (see [47]). Next, our aim is to make a similar construction for any Mp-

wave (2.1) but now playing ∂v the role of ∂t. The construction can be also generalized to

Eisenhart metrics [41]. Previously, observe that formulas (2.3) and (2.1) yield, respectively,

the following two lemmas.

Lemma 2. For any z0 = (x0, u0, v0) ∈ M, I+(z0) ⊆ M × (u0,∞) × R (resp. I−(z0) ⊆
M × (−∞, u0) × R).

Lemma 3. Let z0 = (x0, u0, v0), z1 = (x1, u1, v1), ∆u = u1 − u0. Any causal curve in M
with endpoints z0, z1 and velocity not proportional to ∂v at any point, satisfies |∆u| 6= 0 and

can be uniquely reparametrized as γ(s) = (x(s), u(s), v(s)), ∀s ∈ I = [0, |∆u|], γ(0) = z0,

in such a way that γ(s) satisfies:

3As Causality is conformal invariant, this also corresponds to both, the standard static case, and the

case of GRW (Generalized Robertson-Walker spaces). Nevertheless, the construction can be carried out

in the much more general setting of splitting type spacetimes (which include all the globally hyperbolic

spacetimes [7]); see [47] for a general detailed study, or [48, section 3] for the case GRW.
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(a) The u−component is written as:

u(s)(≡ uν(s)) := u0 + νs, ∀s ∈ I (4.1)

where ν = ∆u
|∆u| i.e., ν = 1 when γ is future-directed and ν = −1 when past-directed,

(b) putting E(s) = 〈γ̇(s), γ̇(s)〉L (E(s) ≤ 0, ∀s ∈ I), then

v(s) = v0 +
ν

2

∫ s

0
(−E(σ) + |ẋ(σ)|2 − F (x(σ), uν(σ)))dσ, ∀s ∈ I. (4.2)

Now, given any (x0, u0), (x1, u1) ∈ M ×R, put ∆u = u1−u0 and assume |∆u| 6= 0. For

each piecewise smooth curve y : [0, |∆u|] → M with endpoints x0, x1, consider the unique

lightlike curve z(s) = (y(s), uν(s), vy(s)), s ∈ I = [0, |∆u|], uν as in (4.1), where vy(s) is

determined from (4.2) (and thus, depends implicitly on ν) by putting E(s) ≡ 0, v0 = 0, x ≡
y. So, if C(≡ C(x0, x1; |∆u|)) denotes the set of all such curves y, a functional

C → R, y 7→ vy(|∆u|)

is obtained. In fact, define functional J∆u
u0

: C → R:

J ∆u
u0

(y) =
1

2

∫ |∆u|

0
(|ẏ(s)|2 − F (y(s), uν(s)))ds. (4.3)

Notice that, from the expression (4.2) for the component vy(s) we have:

vy(|∆u|) = νJ∆u
u0

(y).

Now, consider the arrival map V : (M × R) × (M × R) → [−∞,∞],

((x0, u0), (x1, u1)) 7−→ V ((x0, u0), (x1, u1)) := InfCJ ∆u
u0

∈ [−∞,∞) (4.4)

(∆u = u1 − u0; for convenience, V = ∞ if u0 = u1), which satisfies the triangle inequality

V ((x0, u0), (x2, u2)) ≤ V ((x0, u0), (x1, u1)) + V ((x1, u1), (x2, u2)), (4.5)

whenever u0 < u1 < u2 or u0 > u1 > u2. Even more, from the expression (4.3) it directly

follows that V is symmetric, i.e.:

V ((x0, u0), (x1, u1)) = V ((x1, u1), (x0, u0)), (4.6)

whenever u0 6= u1. From the construction, the following result (which shows that this

function plays a similar role to time arrival Fermat’s one) holds.

Proposition 3. For every z0 = (x0, u0, v0) ∈ M, x1 ∈ M , u1 ∈ R\{u0}:
If u1 > u0 then z1 = (x1, u1, v1) 6∈ I−(z0) and:

z1 = (x1, u1, v1) ∈ I+(z0) ⇔ v1 − v0 > V ((x0, u0), (x1, u1)).

If u1 < u0 then z1 = (x1, u1, v1) 6∈ I+(z0) and:

z1 = (x1, u1, v1) ∈ I−(z0) ⇔ v1 − v0 < −V ((x0, u0), (x1, u1)).
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Proof. Clearly, the second case follows from the first one4 and, within this case, the first

assertion follows from lemma 2. Then:

(⇒) Consider a timelike connecting curve ρ, and construct the lightlike broken geodesic

γ(s) = (y(s), u(s), v(s)) provided by proposition 2 with X = ∂v. Now, the y(s) part yields

the non-strict inequality, which is sufficient as the equality cannot hold (I+(z0) is open

and, thus, the non-strict inequality would follow also for a smaller v1).

(⇐) If ∆u > 0 then V ((x0, u0), (x1, u1)) is the infimum of all the vy(|∆u|) for light-

like curves (at no point tangent to ∂v) joining (x0, u0, 0) with the line {(x1, u1)} × R.

Thus, for some sequence {ǫm}m ց 0, the point z0 can be joined with pm := (x1, u1, v0 +

V ((x0, u0), (x1, u1)) + ǫm) by means of a future-directed lightlike curve, and, for m big

enough, pm can be joined with z1 by means of a (future-directed) integral curve of ∂v.

Thus, z0 < pm < z1 and, as the three points do not lie on an (unbroken) lightlike geodesic,

z0 ≪ z1.

Remark 2.

1. Proposition 3 also ensures that Mp-waves do not admit event horizons (according to

the criterion suggested in [31, sections 2.2.4] and refined in [20, subsection 3.2]), as

any event z0 can be joined with any line {(x1, u1)} × R by means of either a future-

directed (if u0 < u1) or a past-directed (if u0 > u1) timelike curve. This is similar to

the inexistence of horizons in any spacetime which is standard static (on the whole

manifold).

2. Due to the nature of our problem the domain of functional J∆u
u0

will be the set of

piecewise smooth curves C(≡ C(x0, x1; |∆u|)). In fact, we will be interested in the

qualitative properties of the infimum of J ∆u
u0

when ∆u tends to some ∆∞, but not

in the existence of a curve minimizing J∆u
u0

. When such a curve becomes relevant,

a typical technical step is to enlarge C by including curves with a lower degree of

smoothness (H1 curves) —remarkably, this happens in the problem of geodesic con-

nectedness, see [14]. But even in the case of considering curves in such a enlarged

C, the corresponding curves of the Mp-wave (constructed according to lemma 3) are

still causal [14, appendix], in the continuous sense explained in subsection 3.1.

5. Conditions on function F and functional J

In order to get more information about the causal cones of these spacetimes, some technical

conditions on functional J ∆u
u0

become crucial. These conditions are satisfied under natural

restrictions on the growth of F . So, let us define first such relevant types of growth.

Definition 1. Let M be a connected Riemannian manifold, and consider the chosen point

x ∈ M in (2.2). A function F : M × R → R will be said:

4In what follows, even though the results will be stated for both, past and future, the proofs will be

done only for one of them if there is no possibility of confusion.
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Computation of I−(z) (proposition 3):

Arrival map for a lightlike congruence

V : (M × R) × (M × R) → [−∞,+∞]

(connect caus. (x0, u0) with (x1, u1) × R )

↓

Functional approach (4.2)—(4.4):

V ∼ Infimum Lagrang. action J ∆u
u0

on curves in C(x0, x1; |∆u|)

↓

Computation of a past set P :

P = I−[γ], γ lightlike as in lemma 3

Limit for Inf(J∆u
u0

) on C(x0, x∆; |∆u|)
(x∆ = x(u∆), u∆ = u0 + ∆u ր u∞)

Figure 2: Emergency of the functional approach

(i) superquadratic if M is unbounded and contains a sequence of points {pm}m ⊂ M

such that |pm| → ∞ and

R1 · |pm|2+ǫ + R0 ≤ F (pm, u) ∀u ∈ R,

for some ǫ,R1, R0 ∈ R with ǫ,R1 > 0.

(ii) (spatially) at most quadratic if there exist continuous functions R0(u), R1(u) > 0

such that

F (x, u) ≤ R1(u)|x|2 + R0(u) ∀(x, u) ∈ M × R. (5.1)

Even more: (a) if (5.1) holds when |x|2 is replaced by |x|2−ǫ(u) for some continuous

ǫ(u) > 0, function F is called (spatially) subquadratic, and (b) if M is unbounded

and a lower bound analogous to (5.1) also holds, i.e.,

R−
1 (u)|x|2 + R−

0 (u) ≤ F (x, u) ≤ R1(u)|x|2 + R0(u)

R−
1 (u) > 0 then F is (spatially) asymptotically quadratic.

(iii) λ-asymptotically quadratic (on Mp-causal curves), with λ > 0, if M is unbounded and

there exist continuous functions R0(u), R1(u) > 0 and a constant R−
0 ∈ R such that:

λ2|x|2 + R−
0

u2 + 1
≤ F (x, u) ≤ R1(u)|x|2 + R0(u) ∀(x, u) ∈ M × R.
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Remark 3.

1. Of course, these definitions are independent of the choice of x ∈ M in (2.2). The

exact value of functions R0, R1 is not relevant for the definitions and, thus, no more

generality is gained if, say, a term in |x|2−ǫ(u) is added to the right hand side of the

inequalities in (ii) and (iii). Obviously:

subquadratic ⇒ at most quadratic ⇒ no superquadratic

λ-asymptotically quad. ⇒ asymptotically quad. ⇒ at most quad.

2. For definitions (ii) the possible growth of F with u is essentially irrelevant (as Ri,

R−
i depend arbitrarily on u). Nevertheless, this is not the case for the lower bound

(≤) in (iii). The reason is that now the minimum quadratic behavior on F is required

when computed on causal curves, i.e. for functions type u 7→ F (x(u), u). If λ, R−
0

depended arbitrarily on u, the inequality would be very weak. In principle, one would

be forced to make the bound independent of u, i.e., type λ2|x|2 + R−
0 . Nevertheless,

we allow a weakening of this bound just rescaling |x| by dividing it by the same power

of u, and even weaker conditions (as (5.9) below) would suffice.

3. Notice that conditions (i), (ii)(b) and (iii) impose restrictions on the minimal growth

of F for large x and, thus, M is required to be unbounded. Nevertheless, condi-

tion (5.1) and (ii)(a) only bounds the upper growth of F and, so, if M is a bounded

manifold, these definitions also make sense. In particular, any function F on a com-

pact M will be regarded as subquadratic.

4. As proved by the authors in [19], if F is at most quadratic then the corresponding Mp-

wave is strongly causal. Moreover, if the Riemannian manifold M is complete and F

is subquadratic then the Mp-wave is globally hyperbolic. It is worth pointing out that

Hubeny, Rangamani and Ross also studied stable causality by constructing explicitly

time functions [33], and Minguzzi [41, theorem 5.5] related analityc properties of

J (in the more general framework of Eisenhart metrics) with the possible causal

simplicity of the spacetime.

The following two technical conditions on J∆u
u0

will be extensively used.

Definition 2. We will say that a Mp-wave M satisfies hypothesis:

(H1). If, for each u0 ∈ R, there exists ∆0(= ∆0(u0)) ≥ 0 such that for every ∆u > ∆0 (resp.

∆u < −∆0), there exists a sequence of piecewise smooth loops xm : [0, |∆u|] → M

with the same base point x̄ ∈ M (i.e., xm(0) = xm(|∆u|) = x) satisfying

J∆u
u0

(xm) → −∞ when m → ∞. (5.2)

(H2). If hypothesis (H1) holds with ∆0 = 0 for all u0.
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Remark 4. Obviously, hypothesis (H2) implies (H1), and there is no loss of generality

assuming that the base point x̄ is equal to the point chosen in (2.2). Condition (H1) can be

expressed in a simpler way, because if (5.2) holds for some ∆u = ∆ > 0 then it also holds

for all ∆u > ∆ (construct a piecewise smooth curve by “stopping” xm during an interval

of length ∆u − ∆).

In the next two lemmas, appropriate asymptotic behaviors of F are proved to be

sufficient for these hypotheses.

Lemma 4. Hypothesis (H2) holds if F is superquadratic and −F at most quadratic.

Proof. We will consider just the case ∆u > 0. Choose 0 < δ < ∆u/2 and take a sequence

{pm}m as in the definition of superquadratic. Let the sequence of curves xm : [0,∆u] → M

be defined as juxtapositions xm = α−1
m ⋆ pm ⋆ αm

xm(s) =











αm(s) if s ∈ [0, δ]

pm if s ∈ [δ,∆u − δ]

αm(∆u − s) if s ∈ [∆u − δ,∆u],

(5.3)

where αm : [0, δ] → M is a constant speed curve joining x to pm with length Lm ≤ |pm|+1

for all m (if M were complete these curves could be chosen as minimizing geodesics of

speed Lm/δ = |pm|/δ). Clearly, the first term of J∆u
u0

(xm) in (4.3) satisfies the bound:

∫ ∆u

0
|ẋm(s)|2ds =

2L2
m

δ
≤ 2(|pm| + 1)2

δ
. (5.4)

And, from the hypotheses on F , the second term satisfies:

−
∫ ∆u

0
F (xm(s), u(s))ds = −

∫ δ

0
F (xm(s), u0 + s)ds −

∫ ∆u

∆u−δ
F (xm(s), u0 + s)ds

−
∫ ∆u−δ

δ
F (xm(s), u0 + s)ds

≤ 2δ(R̃1L
2
m + R̃0) − (∆u − 2δ)(R1|pm|2+ǫ + R0)

= −R1 |pm|2+ǫ + (terms in |pm|2 and lower degree), (5.5)

for some constants R1, R0, R̃1, R̃0, R1 ∈ R, with R1, R1 > 0. In conclusion, by adding (5.4)

and (5.5) and recalling (4.3),

J∆u
u0

(xm) ≤ 1

δ
(|pm| + 1)2 − 1

2

(

R1 |pm|2+ǫ − (terms in lower degree)
)

,

which clearly converges to −∞ when m → ∞, as required.

Lemma 5. Hypothesis (H1) holds if the Mp-wave satisfies any of the following conditions:

(i) F is λ-asymptotically quadratic for some λ > 1/2.
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(ii) M = R
n and F is the quadratic form

F (x, u) =
∑

ij

fij(u)xixj , with f1j ≡ fj1 ≡ 0 for all j 6= 1,

f11(u) ≥ λ2/(u2 + 1) for large |u| and some λ > 1/2.

In particular, this includes the case F (x, u) =
∑n

i=1 µi(x
i)2 with µ1 > 0.

Proof. The very rough idea can be understood as follows. The loops xm required for (H1)

will be chosen by going and coming back from x̄ to an arbitrarily far point pm, through a

suitably parametrized (almost) geodesic xm. Functional J∆u
u0

(xm) will be upper bounded

essentially by
∫ ∆u

0

(

ẏ2 − R−
1 y2

)

du (5.6)

where y(u)(≥ 0) represents the distance along xm between x̄ and xm(u), and R−
1 (u) & λu−a

for large u and a ≤ 2. Recall that: (a) essentially, the contribution of the integrand of (5.6)

is positive at the extremes (i.e., the base point of the loop), and negative around the

maximum of y(u), and (b) for (H1), one only needs to study ∆u > ∆0, so, one can try

to find ∆0 so big that the contribution of the negative term in (5.6) (say, with the curve

staying a big time at pm) is more important than the positive one. In fact, this is a good

strategy when a < 2 but, in order to obtain an optimal bound when a = 2, the relative

contributions of the negative and positive parts of (5.6) are delicate and depend heavily

on the parametrization of the curve. So, we will consider the Euler-Lagrange equation for

this functional, that is:

ÿ = −R−
1 y,

with y(0) = 0. This is a concave function which, under our hypothesis, oscillates (in the

sense of Sturm-Liouville theory) and, so, satisfies y(∆u) = 0 for some ∆u > 0. This will

yield good candidates to extremize the functional and, then, to obtain arbitrarily large

negative values for it. These ideas will underlie in the following formal proof.

For case (i), let pm ∈ M be any sequence with {|pm|}m → ∞, and αm : [0, 1] → M a

sequence of constant speed curves joining x to pm, whose lengths Lm satisfy Lm−|pm| ց 0

fast so that

(0 ≤) (Lms)2 − |αm(s)|2 ≤ ν0 ∀s ∈ [0, 1] (5.7)

for some small ν0 ≥ 0 (if M were complete, each αm would be taken as a minimizing

geodesic and (5.7) would hold for ν0 = 0). For some 0 < ǫ < 1 such that still ǫλ > 1/2, let

yǫ(s) be the solution of the problem:










ÿǫ(s) = −R−
1 (s/ǫ + u0)yǫ(s) with R−

1 (u) = λ2/(u2 + 1)

ẏǫ(0) = 1

yǫ(0) = 0.

(5.8)

It is known from the very beginning of Sturm-Liouville theory that the lower bound

lim sup
s→∞

[s2R−
1 (s/ǫ + u0)] = ǫ2λ2 > 1/4 (5.9)
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is the critical one for the existence of oscillatory solutions of (5.8), see [52, Ch. 6.3].

Therefore, inequality (5.9) ensures the existence of some ∆∗
0 > 0 (which may depend on ǫ)

such that yǫ(∆
∗
0) = 0 (see [28, theorem 9] as a precise result).

From (5.8), obviously
˙(ẏǫyǫ) = ẏ2

ǫ − R−
1 (s/ǫ + u0)y

2
ǫ

and integrating:

∫ ∆∗

0

0
ẏǫ(s)

2ds −
∫ ∆∗

0

0
R−

1 (s/ǫ + u0) · yǫ(s)
2ds = ẏǫ(∆

∗
0)yǫ(∆

∗
0) − ẏǫ(0)yǫ(0) = 0. (5.10)

Now, for the chosen ǫ ∈ (0, 1), put

∆u := ∆∗
0/ǫ z(s) := yǫ (ǫ · s) ,

and notice:

∫ ∆u
0 ż(s)2ds −

∫ ∆u
0 R−

1 (s + u0) · z(s)2ds

= ǫ
∫ ∆∗

0

0 ẏǫ(s)
2ds − 1

ǫ

∫ ∆∗

0

0 R−
1 (s/ǫ + u0) · yǫ(s)

2ds < 0,

the last inequality clearly from (5.10). In conclusion, the sequence of curves

xm(s) := αm(z(s)/zmax), zmax := max{z(s) : s ∈ [0,∆u]}

will do the job for ∆u, i.e.:

2J ∆u
u0

(xm) =

∫ ∆u

0
|ẋm(s)|2ds −

∫ ∆u

0
F (xm(s), u(s))ds

≤
∫ ∆u

0
|ẋm(s)|2ds −

∫ ∆u

0
(R−

1 (s + u0)|xm(s)|2 + R−
0 (s + u0))ds

≤ L2
m

z2
max

(
∫ ∆u

0
ż(s)2ds −

∫ ∆u

0
R−

1 (s + u0) · z(s)2ds

)

−
∫ ∆u

0
R−

0 (s + u0)ds + ν0

∫ ∆u

0
R−

1 (s + u0)ds

→ −∞,

the last limit because Lm → ∞ and the term in parentheses is negative. Notice that this

divergence is shown for ∆u = ∆∗
0/ǫ, which is sufficient according to remark 4.

Finally, for (ii) repeat the same reasoning but taking instead the sequence of loops

xm(s) = (x1
m(s), 0, . . . , 0) with x1

m(s) = Lm · z(s)/zmax (here z(s) is derived analogously

but using the lower bound for f11 instead of R−
1 ).

Remark 5. Relevant types of plane waves and pp-waves satisfy some of the sufficient

conditions in lemmas 4, 5. Moreover, the behavior of F under condition (i) of lemma 5

is quite general and the estimates optimal. Nevertheless, we have not tried to give a more

general (but probably less simple and transparent) result. In fact, this case (i) does not

include the case (ii), which is completely independent. Roughly, condition (H1) holds
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lem 4
=⇒ (H2) ∼

(

I+(z0) contains

region u > u0

)

theorem 1
=⇒ Non-distinguishing

λ − Asymp quad.

with λ > 1/2

or

analogous condit.

in some direction

or

weaker Sturm

condit. as (5.9)























































lem 5
=⇒ (h1) ∼

(

I+(z0) contains

reg. u > u0 + ∆0

)

figure 4
=⇒

(

P, ↑ P explicit

∂M low dim

)

Figure 3: Consequences of the behaviour of F : technical conditions (H1), (H2) (def. 2) vs

asymptotic conditions (def. 1). The (λ ≤ 1/2)-asymptotic case becomes critical (section 9.1) and

the subquadratic case globally hyp. with expected higher dimension of ∂M (at least in the case M

complete, sections 9.2, 9.3.)

when the system corresponding to (5.8) admits two zeroes. In particular, this happens

when F behaves at least quadratically ∼ λ2(|x|/u)2, λ > 1/2 (or just satisfying (5.9)) on

the (x, u) part of a sequence of causal curves in M with unbounded component x. So,

a direction in the M part with this behaviour (where |x|/u can be regarded as a sort of

“rescaled distance”) suffices, see also remark 3 (2). This turns out the key behavior for the

1-dimensional character of the causal boundary.

On the other hand, by using Sturm-Liouville theory one can find conditions subtler than

“λ-asymptotically quadratic with λ > 1/2” (or directly (5.9)) in order to obtain the required

oscillatory behavior for (5.8) and, thus, (H1) (see for example [28, theorem 10], [52,

Ch. 6.3]). Nevertheless, in the natural types of asymptotic behaviors considered here, our

estimates (for λ, powers of the distance and dependence on u) are the optimal ones, as

shown in the explicit counterexample of subsection 9.1.

6. Non-distinguishing Mp-waves

In this section previous results are applied in order to prove that, when F is superquadratic,

the causal structure of Mp-waves may become “degenerate” in certain sense. More pre-

cisely, such Mp-waves will not be distinguishing. As this is the minimum hypothesis in

order to identify the points of M with pairs (P,F ), these Mp-waves cannot admit a causal

boundary. Nevertheless, this does not mean that these spacetimes may not be useful from

the AdS/CFT viewpoint [34].5

5figure 1 in this reference may also help to understand the geometric situation.
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6.1 The general result

Theorem 1. A Mp-wave satisfying condition (H2) is neither future nor past-distingui-

shing. More concretely, under this hypothesis

I+(z0) = M × (u0,∞) × R ∀z0 ∈ M
I−(z0) = M × (−∞, u0) × R ∀z0 ∈ M.

In particular, this happens if F is superquadratic and −F at most quadratic.

Proof. From lemma 2, to show

M × (u0,∞) × R ⊆ I+(z0)

suffices, and by proposition 3, it is enough to check

InfCJ (= V ((x0, u0), (x1, u1))) = −∞ when u1 > u0. (6.1)

Thus, put ∆u = u1 − u0 and choose 0 < δ < ∆u/2. From (H2) there exists a sequence

xm : [δ,∆u − δ] → M satisfying the corresponding divergence (5.2). So, if α : [0, δ] → M

and β : [∆u − δ,∆u] → M are two fixed smooth curves joining x0 to x and x to x1,

respectively, the sequence of juxtaposed curves (as in (5.3)) {β ⋆ xm ⋆ α}m satisfies the

required divergence for (6.1).

Remark 6. If F is lower bounded then −F is at most quadratic trivially. Thus, theo-

rem 1 extends our previous result [19, proposition 2.1]. On the other hand, theorem 1 can

be extended clearly to obtain the cases future and past distinguishing independently (split

condition (H2) in future and past cases in an obvious way).

As it is well-known, plane waves are always strongly causal, and thus, cannot lie under

the hypotheses of previous theorem. However, this result is useful to decide if many other

pp-waves of possible interest to string theorists can admit a causal boundary.

6.2 Some remarkable examples

Essentially, the following examples are taken from Hubeny and Rangamani [30]. The

expectations to obtain a 1-dimensional boundary are truncated here, as the pp-waves may

be non-distinguishing –a possibility already suggested by the own authors and Ross in [33].

(1) Consider the pp-wave M = R
n × R

2 with

F
(

x1, . . . , xn, u
)

= coshx1 − cos x2. (6.2)

This spacetime leads to the N = 2 sine-Gordon theory on the world-sheet in light-

cone quantization. M does not admit a causal boundary, since function F in (6.2)

is bounded below and superquadratic (take for example pm = (m, 0, . . . , 0) in defini-

tion 1 (i)), and so, theorem 1 (or previous computations in [19, 33]) applies.
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(2) Consider the generalization of previous case to a pp-wave with

F
(

xi, u
)

=
∑

j

fj

(

xj
)

.

In [30] the authors studied the case of a single coordinate F (x, u) = f(x). They

stated that the causal boundary is 1-dimensional whenever f(x) is bounded from

below and, in addition, f(x → ±∞) → +∞. This agrees with our results if f ∼ x2

at infinity. However, from theorem 1, these conditions lead to non-distinguishing

spacetimes whenever f (or one of the functions fj) behaves superquadratically (for

example, F (x, u) = x4) and thus, the boundary is not well defined.

(3) Another examples in [30] are the 4-dimensional vacuum pp-wave spacetime with

F ((x1, x2), u) = − sin x1ex2

or the 5-dimensional pp-wave M = R
3 × R

2 with

F (r, θ, φ, u) = r3
(

5 cos3 θ − 3 cos θ
)

.

In these cases, function F is superquadratic but −F is not at most quadratic. How-

ever, condition (H2) still holds because both conditions on F hold in at least one

direction, say x1 = −π/2 for the first example, or θ = 0 for the second one (explic-

itly, take, say, xm(s) = (m sin π
∆us, 0, 0) in the second example). Thus, the causal

boundary is not well defined again by theorem 1.

(4) Finally, consider an arbitrary 4-dimensional vacuum pp-wave spacetime; i.e.,

M = R
4, 〈·, ·〉L = d(x1)2 + d(x2)2 − F (x, u)du2 − 2du dv,

with function F (x, u) spatially harmonic (∂2
x1F + ∂2

x2F ≡ 0). As pointed out in [20],

in this case there are only three possibilities:6

(a) either F is superquadratic, and thus, the causal boundary makes no sense in

general,7 or

(b) F
(

x1, x2, u
)

= f(u)
(

(

x1
)2 −

(

x2
)2
)

+ 2g(u)x1x2, and then we have a plane

wave (see subsection 8.3), or

(c) F (x, u) = a(u) + b(u)x1 + c(u)x2. In this last case the pp-wave is Lorentz-

Minkowski space,8 and thus, the causal boundary is the classical double cone

(also for the new concept of causal boundary [18, example 10.1]).

6For each constant u, either the harmonic function F (·, u) is superquadratic or it is polynomically

bounded, and thus, it becomes a polynomial (of at most the degree of the bound; in this case, 2): the result

is well-known for holomorphic functions; for harmonic ones stronger results can be seen, for example, at [35,

lemma 4.1].
7Moreover, in this case the pp-wave would be incomplete, according to a conjecture by Ehlers and

Kundt [17].
8Notice that the curvature vanishes (see for example [13, section 2], [20, formula (3)]) and the spacetime

is complete [13, proposition 3.5] and simply connected.
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7. Boundaries in strongly causal Mp-waves

From now on, the ambient hypothesis on M will be strong causality, so that M admits a

causal boundary with a natural topology. Nevertheless, we will state it explicitly because

most of the computations in the next subsection are valid for any Mp-wave.

From corollary 1, only (right) inextendible ν-lightlike curves

γ : [0, ν∆∞) → M, ν∆∞ ∈ (0,∞], (7.1)

with γ̇(s) independent of X = ∂v for all s, are needed in order to compute the pairs

(P,F ) ∈ ∂M. Here again ν = ±1 keeps track of the causal orientation of γ (ν = 1 for

future-directed γ and ν = −1 for past directed) and, so, I−ν [γ], ↑ν γ will denote I−[γ],

↑ γ (resp. I+[γ], ↓ γ) if ν = 1 (resp. ν = −1); for simplicity, the reader can consider

the case ν = 1 and check the final expressions for ν = −1. In what follows, we will work

under a reparametrization γ(s) = (x(s), uν(s), v(s)) as in lemma 3; notice that v(s) is given

by (4.2) with E(s) ≡ 0.

We also put γ(0) = z0 = (x0, u0, v0) and u∞ = u0 + ∆∞ ∈ [−∞,∞]. For any

ν∆ ∈ (0, ν∆∞), we will consider the restriction γ|[0,ν∆] and put γ(ν∆) = z∆ = (x∆, u∆, v∆).

Remark 7. Recall that the curve γ must be inextendible. As γ is reconstructed from its

spatial part, x will be said inextendible when: (i) ν∆∞ = ∞ (i.e., γ is inextendible in u),

(ii) ν∆∞ < ∞ but x is not continuously extendible to ν∆∞ (γ is inextendible in x), or (iii)

ν∆∞ < ∞, x is continuously extendible to ν∆∞ but the (total kinetic) energy diverges,

i.e.: (1/2)
∫ ν∆∞

0 |ẋ(s)|2ds = ∞ (γ is inextendible in v).

7.1 General expressions for P,F , ↑ P, ↓ F

Let us start with I−ν [γ]. From proposition 3, a point z0 = (x0, u0, v0) ∈ M with νu0 < νu∞

lies in I−ν [γ] if and only if (recall the symmetry of V , see (4.6)),

ν(v∆ − v0) > V ((x̄0, ū0), (x∆, u∆)) (7.2)

for some ν∆ > 0 (close to ν∆∞). Put

V∆ = ν(v∆ − v0),

V∆(x̄0, ū0) = V ((x̄0, ū0), (x∆, u∆))(= V ((x∆, u∆), (x̄0, ū0))), (7.3)

that is,

V∆ =
1

2

∫ |∆|

0
(|ẋ(s)|2 − F (x(s), uν(s)))ds

V∆(x̄0, ū0) = infCJ∆
u0

= infy∈C

{

1

2

∫ |∆|

0
(|ẏ(s)|2 − F (y(s), u0 + ν̄s))ds

}

, (7.4)

where

∆ := u∆ − u0 (7.5)
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(here C ≡ C(x̄0, x∆; |∆|) is the set of piecewise smooth curves defined in [0, |∆|] joining x0

with x∆, and ν = ∆/|∆|; recall also that, by hypothesis on z̄0, ν = ν̄ for ∆ close to ∆∞).

Now condition (7.2) translates into

V∆ − V∆(x̄0, ū0) > ν(v0 − v0) for ∆ close to ∆∞. (7.6)

Lemma 6. The left-hand side of (7.6) is non-decreasing when ν∆ ր ν∆∞.

Proof. Close to ν∆∞ and for small νǫ > 0, we have νū0 < νu∆ < νu∆+ǫ(< νu∞), and by

using the triangle inequality (4.5):

V∆+ǫ = V∆ +
1

2

∫ |∆+ǫ|

|∆|
(|ẋ(s)|2 − F (x(s), uν(s)))ds

V∆+ǫ(x̄0, ū0) ≤ V∆(x̄0, ū0) + infy∈C′

1

2

∫ |∆+ǫ|

|∆|
(|ẏ(s)|2 − F (y(s), ū0 + νs))ds,

where now C′ is equal to C(x∆, x∆+ǫ; νǫ) up to the reparametrization (by means of a

translation) with domain [|∆|, |∆ + ǫ|]. Thus, as claimed,

V∆+ǫ − V∆+ǫ(x̄0, ū0) ≥ V∆ − V∆(x̄0, ū0).

Thus, taking the limit ν∆ ր ν∆∞ in (7.6), the following result is obtained.

Proposition 4. Let γ be a inextendible ν-lightlike curve (as in (7.1)). For each z̄0 =

(x̄0, ū0, v̄0), put:

b−(x̄0, ū0) = lim
ν∆րν∆∞

(V∆ − V∆(x̄0, ū0)) (7.7)

(with V∆, V∆(x̄0, ū0) defined in (7.3)). Then:

I−ν [γ] = {z0 ∈ M : νu0 < νu∞ and b−(x0, ū0) > ν(v0 − v0)}.

Next, let us consider the common future (or past) ↑ν γ for γ. From proposition 3, a

point z̄0 = (x0, u0, v0) ∈ M with νu0 ≥ νu∞ lies in I+ν [γ(ν∆)] if and only if (recall the

notation in (7.3))

ν(v0 − v∆) > V∆(x̄0, ū0)

that is,

V∆ + V∆(x̄0, ū0) < ν(v0 − v0). (7.8)

Reasoning as in lemma 6, the triangle inequality (4.5) implies that the left-hand side of (7.8)

is non-decreasing with ν∆ (but now apply it taking into account νū0 > νu∆+ǫ > νu∆, for

νǫ > 0). So, the non-strict inequality will hold in (7.8) when the limit ν∆ ր ν∆∞ is taken.

This will be the key for the following result.

Proposition 5. Let γ be a inextendible ν-lightlike curve (as in (7.1)). For each z̄0 =

(x̄0, ū0, v̄0), put:

b+(x̄0, ū0) = lim
ν∆րν∆∞

(V∆ + V∆(x̄0, ū0)) (7.9)
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(with V∆, V∆(x̄0, ū0) defined in (7.3)). Then:

↑ν γ = I+ν [{z0 ∈ M : νu0 ≥ νu∞ and b+(x0, ū0) ≤ ν(v0 − v0)}]

Proof. (For ν = 1). The inclusion ⊆ for ↑ γ follows easily from the reasoning above.

For the converse, let z′0 ≫ z0, with z0 such that u0 ≥ u∞ and b+(x0, ū0) ≤ v0 − v0.

We can choose z′0 ≫ z′′0 ≫ z0 and we only need to show z′′0 ≫ γ(∆) for all ∆. Since

V∆ + V∆(x̄0, ū0) is non-decreasing, the condition on b+(x0, ū0) implies

V∆ + V∆(x̄0, ū0) ≤ v0 − v0, for all ∆. (7.10)

On the other hand, condition z′′0 ≫ z0 implies

V
(

(x̄0, ū0),
(

x̄′′
0, ū

′′
0

))

< v̄′′0 − v̄0. (7.11)

Thus, adding (7.10), (7.11) and using the triangle inequality (4.5):

V∆ + V∆

(

x̄′′
0 , ū

′′
0

)

< v̄′′0 − v0,

that is,

V∆

(

x̄′′
0, ū

′′
0

)

< v̄′′0 − v∆,

as required.

Recall that, by using lemma 3, the lightlike curve γ in previous two propositions

can be reconstructed from its initial point γ(0), its x-part and its future or past causal

character ν = ±1; in particular, functions b± can be constructed from u0, ν and curve

x(s). Nevertheless, in order to obtain the sets ↑ν I−ν [γ] associated to each I−ν [γ] by

means of these propositions, one must take into account that technicalities appear when

γ (necessarily a lightlike pregeodesic) is not included in I−ν [γ] (in fact, here perhaps ↑ν

γ 6=↑ν I−ν [γ]; recall remark 1 and corollary 1). Fortunately, the following lemma shows

that this situation cannot happen in our case.

Lemma 7. Let γ : [0, |∆∞|) → M be a inextendible ν-lightlike curve constructed from

lemma 3. Then there exists an inextendible ν-timelike curve ρ : [0, |∆∞|) → M such that

I−ν [γ] = I−ν [ρ] and ↑ν γ =↑ν ρ.

Proof. Construct ρ from γ as follows. Take some negative function E(s) < 0 with

−
∫ |∆∞|
0 E(s)ds = ǫ ∈ (0,∞). Then, ρ will have the same parts u(s), x(s) of γ, but com-

pute the v(s) part from (4.2) using the chosen function E(s) and replacing v0 by v0 − νǫ.

Obviously, I−ν [γ] ⊇ I−ν [ρ] and ↑ν γ ⊆↑ν ρ. For the converses, remake the proofs of propo-

sitions 4, 5 for ρ, checking that the additional term in E(s) does not affect to the limits

for b±.

Summing up, this subtlety plus propositions 4, 5 yields the following characterization

of TIP’s and TIF’s.

Theorem 2. Any TIP, P (resp. TIF, F ) of a strongly causal Mp-wave (2.1) is constructed

as follows. Take (u0, v0) ∈ R
2, a piecewise smooth curve x : [0, |∆∞|) → M inextendible to
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Past sets

P , ↑ P

corollary 1 (non-uniq.)

=======⇒
⇐=======

lemma 7 (uniq.)

Inextendible light-

like curve as in

lemma 3

⇑ Th 2 m
Busemann type

functions:

b− (Prop. 4)

b+ (Prop. 5)

(non-unique)

=====⇒
⇐=====

(unique)

(u0, v0) ∈ R
2

x : [0, |∆∞|) −→ M

Inextensible (sense

of remark 7)

↓

Simplification if:

M complete

|F | at most quadr.

}

theorem 3

Additionally

(H1) holds

}

Prop 6

Theor 8.2

=====⇒
1-dimensional

boundary

Figure 4: Computation of P , ↑ P in strongly causal Mp-waves. The scheme of general computation

in terms of Busemann type functions is summarized in the four upper boxes. In the two bottom ones,

under some mild technical simplifications, hypothesis (H1) implies the 1-dimensional boundary. In

boldface crucial conclusions, beyond the technical development.

|∆∞| (in the sense of remark 7) and the function b− associated to u0, x and ν = 1 (resp.

ν = −1) from lemma 3 and (7.7). Putting ∆∞ = ν|∆∞| and u∞ = u0 + ∆∞ one has:

P = {z0 ∈ M : u0 < u∞ and b−(x0, ū0) > v0 − v0}
(resp. F = {z0 ∈ M : u0 > u∞ and b−(x0, ū0) > v0 − v0}).

Even more, taking also the function b+ from (7.9):

↑ P = I+[{z0 ∈ M : u0 ≥ u∞ and b+(x0, ū0) ≤ v0 − v0}
(resp. ↓ F = I−[{z0 ∈ M : u0 ≤ u∞ and b+(x0, ū0) ≤ v0 − v0}).

Proof. Let P be a TIP. By corollary 1, P can be written as the chronological past of a

lightlike curve γ as in (7.1). Applying propositions 4, 5 to γ the required expressions for

P, ↑ P holds.

Conversely, let P be a set defined as in the expression above, and take the associated

inextendible future-directed lightlike curve γ such that P = I−[γ]. By lemma 7, P is a

TIP and ↑ P =↑ γ, as required.
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7.2 Boundary for M complete, |F | at most quadratic

In order to get a manageable causal boundary we need to impose not only strong causality

but also a pair of (natural and not too restrictive) hypotheses more. The first one is the

completeness of the Riemannian part M . Otherwise, the Riemannian Cauchy boundary of

M (i.e., the boundary for the completion as a metric space by using Cauchy sequences) can

complicate the causal boundary. Technically, completeness yields the following well-known

property, to be used later. If the curve x : [0, |∆∞|) → M, |∆∞| < ∞ is not continuously

extendible to |∆∞| (i.e., it lies in the case (ii) of remark 7) then the completeness of M

implies that its length diverges and, by Cauchy-Schwarz inequality, so does its energy, i.e.:

∫ |∆∞|

0
|ẋ(s)|2ds = ∞. (7.12)

The second one is that not only F must be at most quadratic (which is the natural sufficient

bound for strong causality [19, theorem 3.1]), but also so must be |F |. Otherwise, other

interesting geometric properties of the spacetime, as the geodesic completeness of the whole

Mp-wave, may be destroyed (even in the simplest case of M complete and F independent

of u), see remark 8.

Under these two hypotheses, we will obtain a technical property for ↑ γ or ↓ γ

(lemma 8(ii)), plus a remarkable simplification for TIP’s and TIF’s, namely, any TIP deter-

mined by a (ν = 1)-lightlike curve with |∆∞| < ∞, is just the region u < u∞ (lemma 8(i)).

Remark 8. This simplification is also pointed out in [30, section 5.1]. Nevertheless, the

hypothesis |F | at most quadratic is missing there. The following example shows that it

cannot be dropped. Consider the (3-dimensional) pp-wave M = R
3 with F (x, u) = −x4.

This is globally hyperbolic (as F is subquadratic) and incomplete. In fact, the future-directed

lightlike geodesic γ : [0, u∞) → M, γ(s) = (y(s), u(s), v(s)) determined by

s(y) =

∫ y

0

1
√

1 + ȳ4
dȳ, u(s) = s, v(0) = 0,

is incomplete, as u∞ (the integral until y = ∞) is finite. Obviously, I−[γ] ⊂ {z0 : u0 < u∞}
but the inclusion is strict. In fact, y(s) strictly minimizes functional9

∫ s0

0 (ẋ(s)2 + x(s)4)ds

for all s0 ∈ [0, u∞). From (4.4) the arrival function V satisfies:

V ((0, 0), (y(u), u)) =
1

2

∫ u

0
(ẏ(σ)2 + y(σ)4)dσ = v(u), ∀u ∈ (0, u∞).

So, from the interpretation of V (Prop. 3), (0, 0, v0) 6∈ I−(γ(u)) for any u ∈ (0, u∞),

whenever v0 ≥ 0.

9This can be checked from general arguments: (a) looking at the functional as a Lagrangian with negative

“potential” V = −x4/2, a minimum must be attained for each s0 ∈ (0, u∞), (b) this minimum must be

attained by a solution of the corresponding Euler-Lagrange equation ẍ − 2x3 = 0 (one of its solutions

being y(s)), and (c) the boundary conditions x(0) = y(0) = 0, x(s0) = y(s0), determine univocally the

solution (recall that, from standard theory of equations, a second solution x(s) would be fixed univocally

by x(0), ẋ(0), but, for example, ẋ(0) > ẏ(0) ⇒ x(s0) > y(s0)).
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In order to avoid these difficulties, from now on we will assume that |F | is at most

quadratic and M complete:

Lemma 8. Under these two hypotheses, if the inextendible causal curve γ : [0, ν∆∞) → M
satisfies ν∆∞ < ∞ then:

(i) b−(x̄0, ū0) = ∞ if νū0 < νu∞,

(ii) there exists νδ > 0 such that b+(x̄0, ū0) = ∞ whenever νu∞ ≤ νū0 < ν(u∞ + δ).

Even more, |δ| = ∞ if F is subquadratic.

Proof. Since γ is inextendible, so is its component x, thus, its energy (7.12) diverges. From

the at most quadratic behaviour of |F |, and the fact that the image of uν lies in a compact

subset, we have, up to an additive constant:

2V∆ ≥ A∆ :=

∫ ∆

0
|ẋ(s)|2ds − R

∫ ∆

0
|x(s)|2ds, for some R > 0 (7.13)

(recall the first formula in (7.4)).

(i) As V∆(x̄0, ū0) is obtained taking an infimum in J∆
ū0

(recall ∆ = u∆ − ū0 = ∆ + u0 −
ū0)), from Prop. 4 it is enough to exhibit a curve y∆ ∈ C(x̄0, x∆; |∆|) for each ∆ close

to ∆∞, such that

lim
∆ր∆∞

V∆ − J ∆
ū0

(y∆) = ∞. (7.14)

Concretely, y∆ will be taken as a minimizing geodesic. In fact, for some constants

C1, C2 > 0 (and assuming x0 = x in (2.2) without loss of generality)

2J ∆
ū0

(y∆) =
|x∆|2
|∆̄| −

∫ |∆|

0
F (y∆(s), ū0 + νs)ds ≤ C1|x∆|2 + C2,

the equality by taking into account the minimizing character of y∆, and the inequality

by the at most quadratic bound of |F | and the fact that |∆| is bounded (|∆∞| < ∞).

Therefore, the mentioned inequality 2V∆ ≥ A∆ plus corollary 2 (its last assertion)

yields the required limit (7.14).

(ii) As we have seen V∆ diverges and, thus, it is enough to prove the existence of νδ > 0

such that V∆(x̄0, ū0) is lower bounded for any ν∆ ∈ (0, νδ). From the at most

quadratic behaviour of F we have

2J ∆̄
ū0

(y) ≥
∫ |∆|

0
|ẏ(s)|2ds −

∫ |∆|

0
(R1|y(s)|2 + R0)ds

for any y ∈ C(x̄0, x∆; |∆|) and for ∆ such that ν∆ ≥ ν(∆∞−1) (so that the coefficients

R1(u), R0(u) for at most quadraticity can be replaced by their maximums in u). Then,

the required δ and lower bound are straightforward from proposition 8.
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Notice that part (i) of lemma 8 plus proposition 4 yield:

I−ν [γ] = {z0 ∈ M : νu0 < νu∞(< ∞)},

and the part (ii) joined to proposition 5 yield:

↑ν γ ⊂ {z̄0 ∈ M : νū0 > ν(u∞ + δ)},

which is an information additional to theorem 2.

Summarizing, the two ambient hypotheses of lemma 8 yield the following strengthening

of the conclusions of theorem 2.

Theorem 3. Let M be a Mp-wave with |F | at most quadratic and M complete. Choosing

(u0, v0) ∈ R
2, x : [0, |∆∞|) → M and b− as in theorem 2, the equalities for non-empty past

and future sets read as:

P =

{

z0 : u0 < u∞ if u∞ < ∞
z0 : b−(x0, ū0) > v0 − v0 if u∞ = ∞,

F =

{

z0 : u0 > u∞ if u∞ > −∞
z0 : b−(x0, ū0) > v0 − v0 if u∞ = −∞.

Even more, for each P , F as above there exists νδ > 0 such that:

↑ P = I+[{z0 : u0 ≥ u∞ + νδ and b+(x0, ū0) ≤ v0 − v0} ⊂ {z̄0 : ū0 > u∞ + νδ},
(resp. ↓ F = I−[{z0 : u0 ≤ u∞ − νδ and b+(x0, ū0) ≤ v0 − v0} ⊂ {z̄0 : ū0 < u∞ − νδ}),

and, if F is subquadratic, one can take δ = ∞, i.e.:

↑ P = ∅, ↓ F = ∅.

Remark 9. Notice that, in order to write the pairs (P,F ) ∈ ∂M, a TIF F cannot be

S-related with two TIP’s P,P ′. In fact, the corresponding u∞ should be finite for P and

P ′ (otherwise, the common future would be empty) and, thus, one of them, say P , would

be included in the other, P ′ (contradicting the maximality of P in ↓ F ).

In the subquadratic case for |F |, ∂M is the union of all the pairs (P, ∅) and (∅, F ); in

particular, no ideal points in ∂̂M and ∂̌M are identified (this is a general fact, for globally

hyperbolic spacetimes [18, theorem 9.1]). In the general at most quadratic case, pairs (P,F )

with none of the components empty are allowed (as well as identifications between points

in ∂̂M and ∂̌M). But, even in this case, a non-empty P can form an ideal point with at

most one F , and viceversa.

8. Mp-waves with natural 1-dim. ∂M

8.1 Collapsing to i±

We begin by studying the case of lightlike curves with diverging component u.
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Proposition 6. Let M be a Mp-wave with |F | at most quadratic, M complete, and satis-

fying condition (H1) in Def. 2. If γ : [0,∞) → M is a ν-lightlike curve, then

I−ν [γ] = M, ↑ν γ = ∅.

Proof. Clearly, the second equality directly follows from theorem 3. For the fist one, fix

z0 ∈ M. Again from theorem 3, it suffices to show that b−(x0, u0) = ∞. To this aim, we

only need to prove (recall (7.7)):

V∆(x̄0, ū0) =
(

infCJ∆
u0

=
)

−∞ for all ∆ big enough (8.1)

with ∆ = ∆+u0−u0, and C ≡ C(x̄0, x∆; |∆|). Choose all the ∆’s such that ∆−2 is greater

than the value of ∆0 = ∆0(u0 + 1) given by hypothesis (H1). Consider the following

constant speed smooth curves: α : [0, 1] → M joining x0 to x and β∆ : [∆ − 1,∆] → M

connecting x to x(∆). Let xm be the sequence of piecewise smooth loops provided by

hypothesis (H1) for u0 = u0 + 1 and ∆u = ∆ − 2. The sequence of juxtaposed curves

y∆m
= β∆ ⋆ xm ⋆ α, i.e.,

y∆m
(s) =











α(s) if s ∈ [0, 1]

xm(s − 1) if s ∈ [1,∆ − 1]

β∆(s) if s ∈ [∆ − 1,∆],

satisfies:

J∆
u0

(y∆m
) =

1

2

∫ ∆

0
|ẏ∆m

(s)|2ds − 1

2

∫ ∆

0
F (y∆m

(s), u0 + s)ds

=
1

2
length(α)2 +

1

2
length(β∆)2

−1

2

∫ 1

0
F (α(s), u0 + s)ds − 1

2

∫ ∆

∆−1
F (β∆(s), u0 + s)ds

+J∆−2
u0+1(xm).

Thus, hypothesis (H1) ensures that J ∆
u0

(y∆m
) goes to −∞ when m goes to +∞, and (8.1)

holds, as required.

With this result and theorem 3 at hand, our aim in the next subsections is to formalize

precisely the cases when the boundary of the wave is a lightlike line.

8.2 Case asymptotically quadratic

Now, if we take into account the boundary construction in subsection 3.2, we can establish

the following result:

Theorem 4. The causal boundary ∂M of a Mp-wave with F λ-asymptotically quadratic

for some λ > 1/2, and M complete has the following structure:

1. As a point set, two copies L+, L− of R, with eventual identifications between the

points of the copies, plus two ideal points i+, i−. In fact, ∂M will be written as a

union (non-necessarily disjoint, due to the identifications) ∂M = ∂̂M ∪ ∂̌M where

∂̂M ≡ L+ ∪ {i+} and ∂̌M ≡ {i−} ∪ L−.
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2. Topologically, the following natural homeomorphisms hold: ∂̂M ∼= (−∞,∞], ∂̌M ∼=
[−∞,∞). Moreover, ∂M is a quotient topological space with the possible identifica-

tions allowed in (a) above.

3. Causally, ∂̂M, ∂̌M, with the restriction of the weak causal relation in ∂M, are totally

ordered and weakly locally lightlike (i.e., each Q in, say, ∂̂M has a neighbourhood

L ⊆ ∂̂M such that: any Q1, Q2 ∈ L are weakly horismotically related in ∂̂M if and

only if Q1 < Q2 as points of (−∞,∞]).

Proof. From lemma 5 (i) and definition 1 (iii), the hypotheses of theorem 3, proposition 6

hold. Therefore, directly from proposition 6 and theorem 3:

I−[γ] = M, ↑ γ = ∅ if ∆∞ = ∞,
{

I−[γ] = {z0 : u0 < u∞}
↑ γ = I+[{z0 : u0 ≥ u∞ + δ, b+(x0, u0) + v0 − v0 ≤ 0}] if ∆∞ < ∞, (8.2)

for any future-directed lightlike curve γ with u(s) = u0 +s. Thus, the future causal bound-

ary ∂̂M contains the ideal point i+ and a copy L+ corresponding to the line u∞ ∈ (−∞,∞).

Moreover, the chronological topology clearly attaches i+ to the right extreme of L+ (and it

is the natural topology on L+). On the other hand, any two points u∞, u′
∞ ∈ L+, u∞ < u′

∞,

are weakly causally related, since the corresponding pairs of terminal sets (P,F ), (P ′, F ′)

satisfy:

P = {z0 : u0 < u∞} ⊂ {z0 : u0 < u′
∞} = P ′. (8.3)

Moreover, taking into account that F ⊂↑ P ⊂ {z0 : u0 > u∞ + δ} for some δ > 0 (recall

theorem 3), one has, for u∞ < u′
∞ ≤ u∞ + δ,

F ∩ P ′ ⊂ {z0 : u∞ + δ < u0 < u′
∞} = ∅.

Whence, (P,F ), (P ′, F ′) are not chronologically related, and ∂̂M is weakly locally lightlike.

Analogously, the past causal boundary ∂̌M can be represented by another copy L− of

the line u∞ ∈ (−∞,∞) plus the ideal point i− attached at the left extreme, and is weakly

locally lightlike.

Finally, the (total) causal boundary ∂M is formed by L+ ∪ {i+} ∪ L− ∪ {i−}, up to

eventual identifications between those ideal points in L−, L+ represented by the same pair

of terminal sets, and all the conclusions follow.

Remark 10. Notice that we have stated only the weak causal relation, as we have proven

P ⊂ P ′ in (8.3) but not F ′ ⊂ F . The possible difficulty for this inclusion appears only in the

very particular case that F ′ is a maximal TIF into ↑ P , and P ′ a maximal TIP into ↓ F ′,

and thus F = ∅. This situation cannot happen if, for example, F (x, u) is independent of u,

since then F is maximal TIF into ↑ P if and only if P is maximal TIP into ↓ F . As a con-

sequence, the boundary in this case becomes locally lightlike for the natural causal relation.
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8.3 Plane waves

Consider now the case of a plane wave M = R
n × R

2,

F (x, u) =
∑

i,j

fij(u)xixj, fij = fji.

For simplicity, assume that F has the form of lemma 5 (ii) and, thus, falls under the

hypotheses of theorem 3 and proposition 6. Then, reasoning as in theorem 4:

Theorem 5. The causal boundary of a plane wave with f1j ≡ 0 for all j 6= 1, and f11(u) ≥
λ2/(u2 + 1), for large |u| and some λ > 1/2, is as described in theorem 4, remark 10.

Remark 11. Some particular cases where fij is diagonal have been computed by Hubeny

and Rangamani in [30], and it is worth comparing here. They used the existence of “oscil-

lating geodesics” as an evidence of a 1-dimensional boundary. The items in [30, subsection

4.3] labelled 1, 2, NL1, NL3 as well as the case f11(u) = 1/(u2 + 1) of item 4 (or the sin-

gular case NL2) do have such oscillating geodesics, and are particular cases of theorem 5.

The case f11(u) = cos u (item 3), is included in the technique, as it satisfies trivially the

inequality (5.9) and, thus the conclusion of lemma 5 holds (see remark 5). In the singular

case f(u) = λ2/u2 (item 6) they obtain oscillatory geodesics for λ2 > 1/4, also in agreement

with theorem 5. As shown in subsection 9.1 by means of a counterexample, one cannot ex-

pect a 1-dimensional boundary even in the limit case λ2 = 1/4. So, it is not surprising now

that, if f11(u) = e−u2

(as in [30, subsection 4.3, item 5]) the oscillatory behaviour ceases.

Very roughly, in our approach the infimum of some functional is considered, and in

Hubeny and Rangamani’s just the (lightlike geodesics associated to the) critical curves of

this functional. Of course, when the infimum is attained the minimizing curve is critical,

but our functional approach has clear advantages. In fact, it relies only on the qualita-

tive functional properties rather than on the exact details of the Euler-Lagrange equation.

The oscillating geodesics in the most accurate Hubeny and Rangamani’s results, imply

the existence of a solution with two zeros for the Euler-Lagrange equation of our simplified

functional (5.6) (see the discussion around this formula), and this is enough for the results.

Recall that only the 1-dimensional character of the boundary is ensured by theo-

rems 5, 4. The question of establishing which ideal points in L+ and L− must be identified

becomes hard, and depends on the behaviour of function b+ in (8.2). The only addi-

tional information on b+ is provided by lemma 8(ii) (or, equivalently, by the expressions of

↑ P, ↓ F in theorem 3).

Nevertheless, identifications can be easily computed in the highly symmetric case of

plane waves with F (x, u) independent of10 u, i.e., F (x, u) =
∑

ij µijx
ixj , with µij symmet-

ric coefficient matrix. Here, each ↑ P is equal to some F and viceversa [36]. As remarked

in [36], these Mp-waves contain many interesting examples for string theory (maximally

supersymmetric 11-dimensional solution obtained from the Penrose limit of AdS4×S7 and

10They are usually called homogeneous plane waves, even though the name locally symmetric is intrinsic

and seems more appropriate, see for example [23].
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AdS7×S4 [9], partially supersymmetric plane waves in ten dimensions [16, 4, 40], including

the Penrose limit of the Pilch-Warner flow [15, 25, 10]). Due to the exceptionality of this

case, we will not attempt a very general result here. Simply, we will give an extended ver-

sion of the result in [36], in order to check how our technique works. More general results

would rely on the possibility to reformulate lemma 9 below and extend formulas (8.4), (8.6).

Concretely, now we assume that function f11 in theorem 5 is constant and equal to the

biggest eigenvalue µ1 of the matrix fij(u), and µ1 > 0.

Lemma 9. Under these hypotheses, let γ : [0, |∆∞|) → M be an inextendible ν-lightlike

curve, with |∆∞| ∈ (0,∞), ν∆∞ > 0 and u∞ := u0 + ∆∞. Then:

If ν = 1, ↑ γ = R
n × (u∞ + π/µ1,∞) × R.

If ν = −1, ↓ γ = R
n × (−∞, u∞ − π/µ1) × R.

Proof. (For ν = 1.) ⊇. Clearly, if z′0 ∈ R
n × (u∞ + π/µ1,∞) × R then z′0 ≫ z0 for some

z0 = (x0, u0, v0) with u0 = u∞+π/µ1. Therefore, from proposition 5 the required inclusion

follows by proving b+(x0, ū0 = u∞ + π/µ1) = −∞, or just (recall (7.9)):

V∆(x̄0, ū0) = −∞ for all ∆ < ∆∞ close to ∆∞. (8.4)

Thus, for ∆ close to ∆∞, consider |∆|(> π/µ1) as in (7.5) and take 0 < δ∆ < |∆|/2 small

enough such that

µ2
1 ≥ π2 + ǫ∆

(|∆| − 2δ∆)2
, for some ǫ∆ > 0. (8.5)

Define the juxtapositions

y∆m
(s) =











−x(∆)
δ∆

s + x(∆) if s ∈ [0, δ∆]

(y1
∆m

(s), 0, . . . , 0) if s ∈ [δ∆, |∆| − δ∆]
x0

δ∆
s + δ∆x0−|∆|x0

δ∆
if s ∈ [|∆| − δ∆, |∆|],

with

y1
∆m

(s) = m sin

(

π

|∆| − 2δ∆

(s − δ∆)

)

∀s ∈ [δ∆, |∆| − δ∆].

Then, from (8.5) we obtain

J∆
u∆

(y∆m
) =

1

2

∫ |∆|

0
(|ẏ∆m

(s)|2 − F (y∆m
(s), u∆ + s))ds

=
1

2

(

∫ |∆|−δ∆

δ∆

|ẏ1
∆m

(s)|2ds − µ2
1

∫ |∆|−δ∆

δ∆

y1
∆m

(s)2ds

)

+ Λ∆

≤ 1

2

∫ |∆|−δ∆

δ∆

|ẏ1
∆m

(s)|2ds − π2 + ǫ∆

2(|∆| − 2δ∆)2

∫ |∆|−δ∆

δ∆

y1
∆m

(s)2ds + Λ∆

= − ǫ∆m2

4(|∆| − 2δ∆)
+ Λ∆
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for some Λ∆ ∈ R independent of m. Summing up, J ∆
u∆

(y∆m
) → −∞ when m → +∞,

and (8.4) holds.

⊆. We will prove that, if z′0 6∈ R
n × (u∞ + π/µ1,∞) × R then z0 6∈ ∩∆I+[γ(∆)] for

any z0 ≪ z′0 (and thus, z′0 6∈↑ γ). From lemma 2, u0 − u∞ < π/µ1, and by proposition 5,

it is enough:

V∆(x̄0, ū0) > −∞ is lower bounded for all ∆ < ∆∞ close to ∆∞ (8.6)

(recall (7.9) and the fact that V∆ → ∞ because of (7.13) and corollary 2). From the

hypotheses, |∆| ≤ (π−ǫ0)/µ1, for some ǫ0 > 0, and for all ∆ < ∆∞ close enough. Therefore,

J ∆
u∆

(y) =
1

2

∫ |∆|

0
(|ẏ(s)|2 − F (y(s), u∆ + s))ds

≥ 1

2

(

∫ |∆|

0
|ẏ(s)|2ds − µ2

1

∫ |∆|

0
|y(s)|2ds

)

≥ 1

2|∆|

(

|∆|
∫ |∆|

0
|ẏ(s)|2ds − (π − ǫ0)

2

|∆|

∫ |∆|

0
|y(s)|2ds

)

.

As V∆(x̄0, ū0) is obtained by taking the infimum in this expression, the bound for λ in

theorem 7 (see appendix) ensures (8.6), as required.

Theorem 3 and lemma 9 tell us that the pair (I−[γ], ↑ γ) with u ր u∞ coincides

with (↓ γ̃, I+[γ̃])) with u ց u∞ + π/µ1, i.e., each future ideal point represented by some

u∞ ∈ L+ must be identified with the past ideal point represented by u∞ +π/µ1 ∈ L− (and

there are no more identifications). Summing up:

Theorem 6. Let M be a plane wave with f1j ≡ 0 for all j 6= 1, and f11(u) a positive

constant function equal to the biggest eigenvalue of fij(u) (in particular, any locally sym-

metric plane wave with a positive eigenvalue). Then, ∂M is weakly locally lightlike and

canonically identifiable to [−∞,∞], both as a point set and as a topological space, being the

weak causal relation the corresponding one to the natural order. Even more, in the locally

symmetric case this also holds for the causal relation.

9. Higher dimensionality of ∂M

When F grows less fast than quadratic (in all directions) one does not expect a 1-

dimensional boundary. In fact, if F is subquadratic and M complete then the Mp-wave

becomes globally hyperbolic. So, there are no identifications between ∂̂M, ∂̌M and, the

structure of the spacetime suggests a boundary with two pieces which resemble in some

sense the Cauchy hypersurfaces11 –notice that the Cauchy hypersurfaces are necessarily

noncompact and, at least when M is non-compact, one could expect that some portion

11If M were not complete, global hyperbolicity may be destroyed, but the main difference in the expected

picture is that additional boundary points would appear, associated to inextendible curves in M with finite

energy.
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of ∂M were higher dimensional, even of dimension (n + 1). Some concrete cases will be

briefly analyzed in subsections 9.2, 9.3. But, first, we will see that the (λ = 1/2)-asymptotic

quadratic growth of F becomes critical for the 1-dimensional character of the boundary.

Recall that this case appears in geometries derived from NS5 branes, see [30, section 4.3,

NL2].

9.1 Criticality of λ = 1/2 for 1-dimensionality

Consider for simplicity a pp-wave M = R
n+2 with F = Fλ, λ ∈ R, satisfying:

Fλ(x, u) = λ2|x|2/(1 + u)2, (9.1)

for u ≥ 0 (and eventually for u < −2, but we will not take care of this part). Obviously,

Fλ is λ-asymptotically quadratic and, for λ > 1/2, ∂̂M is 1-dimensional (and so essentially

∂M). Our purpose is to show that this is not the case for λ = 1/2, which shows the

optimal character of our results.

Concretely, we will construct ν-lightlike curves γ : [0,∞) → M with u(s) ր ∞ such

that I−[γ] 6= M. Thus, the collapse of all the corresponding ideal points to the single one

i+ (which was essential in section 8 –proposition 6– in order to ensure the 1-dimensionality

of the boundary) will not hold. As a technical previous step:

Lemma 10. Let F = F1/2 in (9.1) and n = 1. Consider the functional

J∆u
0 (x) =

∫ ∆u

0

(

ẋ2 − F (x(u), u)
)

du

and the solution y(u) =
√

1 + u to the Euler-Lagrange equation

ÿ + p(u)y = 0 p(u) = 1/4(1 + u)2.

Then

Infx∈C(1,y(∆u);∆u)J ∆u
0 = J∆u

0 (y|[0,∆u]) = 0

for all ∆u > 0.

Proof. The last equality is straightforward, so, we will see that y|[0,∆u] minimizes the

functional by usual techniques from Sturm-Liouville theory (see [3, section 1.1], [52, Ch.

4]). Put g(u) = ẏ(u)/y(u), which satisfies Riccati’s equation ġ + g2 = −p. For any

x ∈ C(1, y(∆u);∆u) one has:

J∆u
0 (x) =

∫ ∆u

0

(

ẋ2 − px2
)

du =

∫ ∆u

0
(ẋ − xg)2 du + x2(u)g(u)

]u=∆u

u=0
(9.2)

(expand the first term in the right side and integrate by parts 2
∫

xẋg =
∫

ẋ2g). And

taking into account that curves x, y coincide at the extremes:

J∆u
0 (x) ≥ x2(u)g(u)

]u=∆u

u=0
= y2(u)g(u)

]u=∆u

u=0
= J∆u

0 (y)

(the last equality applying (9.2) to x = y).
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Now, consider the lightlike curve in the pp-wave γ(u) = (x(u), u, v(u)) constructed

from lemma 3 with x(u) = y(u)~e, where ~e is any unit vector of R
n and y(u) =

√
1 + u (and

v(0) = 0). From (4.4) and lemma 10, the arrival function V satisfies:

V ((x(0), 0), (x(u), u)) = 0, ∀u > 0.

Thus, from the interpretation of V (proposition 3), z = (x(0), 0, v0) 6∈ I−(γ(u)) whenever

v0 ≥ 0(= v(u)).

Remark 12. Notice that this not only proves the required inequality I−[γ] 6= M. In

fact, moving ~e in all the directions (~e ∈ S
n−1 ⊂ R

n), and v(0) ∈ R, different curves

γ = γ[~e, v(0)] are obtained. Each one yields an ideal point, that is, a portion of ∂M
containing a n-dimensional subset of ideal points is constructed.

9.2 Static and Minkowski type Mp-waves

According to Garćıa-Parrado and Senovilla [22], a spacetime M is called causally related

with a second one M′, shortly M ≺ M′, if a diffeomorphism φ maps the causal cones of M
into the ones of M′; moreover, M,M′ are isocausal if M ≺ M′ and M′ ≺ M. Intuitively,

when M ≺ M′ the causal cones of M′ can be obtained by opening the ones of M. If

they are isocausal then they are not necessarily conformal, but many causal properties are

shared by both spacetimes [22, 21].

When a Mp-wave has coefficient F (x, u) bounded in x then it becomes isocausal to

the simplest choice F ≡ 0, more precisely:

Proposition 7. Let (M, 〈·, ·〉L) be a Mp-wave with |F (x, u)| ≤ f(u) for all (x, u) ∈ M×R,

where f is a continuous function. Then (M, 〈·, ·〉L) is isocausal to the standard static

spacetime obtained just making F ≡ 0, i.e.

M = M × R
2, g0 = 〈·, ·〉 − 2dudv.

Proof. By a simple computation of the causal cones, the metrics

g± := 〈·, ·〉 ± f(u)du2 − 2dudv

satisfy

(M, g−) ≺ (M, 〈·, ·〉L) ≺ (M, g+).

But recall that both metrics g± are isometric to the static (M, g0), as shown by the global

change of coordinates:

ũ = u, ṽ = v ∓ 1

2

∫ u

0
f(σ)dσ.

So, even though the relation between the causal boundaries of two isocausal spacetimes

does not seem trivial, one expects that, when proposition 7 applies, the boundary of the

Mp-wave will not be too different to the boundary of the corresponding static model. In

particular, when M = R
2 the static spacetime is L

n+2, so, if pp-waves are considered, one

expects a boundary not very different to Lorentz-Minkowski’s.
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9.3 The case −F quadratic

Marolf and Ross [36] proved that the conformal boundary is a set of two lightlike hy-

perplanes joined by two lightlike lines, in the case of (conformally flat) locally symmetric

plane waves with equal negative eigenvalues. Now, we will extend that proof to include

non-locally symmetric ones. Then, the causal boundary will be also computed and, as we

will see, the picture will be a bit different.

We will also focus on the simplest case of a (non-locally symmetric) plane wave with

equal negative eigenvalues of F . This corresponds to the case −F quadratic (which can be

studied in further detail with the introduced techniques). Thus, let M = R
n+2 with

〈·, ·〉L = dx2 + |x|2f(u)du2 − 2du dv, f(u) > 0, (9.3)

where, x = (x1, . . . , xn). Consider the differential equation

r̈(u) = f(u)r(u), r(0) = 1, ṙ(0) = 0. (9.4)

The change of variables

x = r(u)x̃, v = ṽ +
1

2
r(u)ṙ(u)x̃2

takes (9.3) into

〈·, ·〉L = r(u)2dx̃2 − 2dudṽ,

on all R
n+2. Thus, the further change of variable ũ =

∫ u
0

du′

r(u′)2 yields the explicitly confor-

mally flat expression:

〈·, ·〉L = r(ũ)2(dx̃2 − 2dũdṽ). (9.5)

Observe that the domain for coordinate ũ is given by:

ũ−∞ < ũ < ũ∞ with ũ±∞ :=

∫ ±∞

0

ds

r(s)2
, 0 < ±ũ±∞ < ∞,

being the finiteness of ũ±∞ a consequence of the convexity of r in (9.4). Therefore, the

plane wave is conformal to the proper region ũ−∞ < ũ < ũ∞ of Minkowski spacetime (in

the coordinates of (9.5)). In particular, the conformal boundary (for the restriction of the

classical Minkowski embedding) consists of two parallel lightlike hyperplanes at ũ = ±ũ∞

and two lightlike lines (say, two copies of [ũ−∞, ũ∞]) which represent the intersection of

the region ũ−∞ ≤ ũ ≤ ũ∞ with the past and future infinity J± of Minkowski space.

Now, recall that the conformal version (9.5) of the plane wave (9.3) can be also used

to compute the causal boundary, and it looks like somewhat different. In fact, this bound-

ary contains again two lightlike hyperplanes (which can be identified in L
n+2 with pairs

(I−(z), ∅) ∈ ∂̂M, where u(z) = ũ∞, and (∅, I+(z)) ∈ ∂̌M with u(z) = ũ−∞), and two

lightlike lines. But these lines are now identified naturally with copies (ũ−∞, ũ∞] ⊂ ∂̂M
and [ũ−∞, ũ∞) ⊂ ∂̌M (say, as no future-directed timelike curve approaches ũ−∞). Notice

that, both ∂̂M and ∂̌M are connected and non-compact, and there are no identifications

for ∂M; thus, plainly ∂M = ∂̂M∪ ∂̌M.
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10. Conclusions

We have carried out a systematic study of Mp-waves, being our main goals:

1. We consider the very wide family of wave-type spacetimes (2.1) and determine the

general qualitative behaviour of the metric which yields a 1-dimensional causal bound-

ary, as well as other properties, see table 1.

2. Even though we particularize our general results to many cases, our main aim is to

introduce general techniques potentially applicable to other cases of interest in Gen-

eral Relativity, String Theory or other theories. These techniques involve a functional

approach, Sturm-Liouville theory, the introduction of new Busemann type functions

and technicalities on Causality.

3. The functional approach (which is a variant of the one introduced in [19]) is also

interpreted as an arrival time function, with clear analogues to Fermat’s principle

one. This interpretation also clarifies the causal structure of the waves, including the

inexistence of horizons.

4. Our study includes the improvements on the notion of causal boundary in [37, 18].

Even though the well-known historical problems of this notion can be minimized in

a first approach (as in [30]), finally a consistent notion of the identifications of future

and past sets, as well as a reasonable topology, must be carried out. In fact, the

former may lead to new interpretations (in order to go beyond infinity, as claimed

in [36]) and the latter is unavoidable to speak on the dimension of the boundary.

What is more, the new Busemann-type functions b± here introduced seem to have

general applicability for this notion of causal boundary.

Summing up, this work has obvious contents for classical Causality and General Rel-

ativity, and it is also introduced as a tool for the string community, in order to check the

exact possibilities of holography on plane waves backgrounds.

A. Technical bounds for functionals

Theorem 7. Let M be a Riemannian manifold and xm : [0,∆m] → M a sequence of

piecewise smooth curves with diverging energies and such that the endpoints xm(0), xm(∆m)

are contained in a bounded region B of M for all m. Then, for any λ < π2, and any

µ, k ∈ R, 0 < ǫ < 2:

∆m

∫ ∆m

0
|ẋm(s)|2ds − 1

∆m

∫ ∆m

0
(λ|xm(s)|2 + µ|xm(s)|2−ǫ + k)ds → ∞.

12For this subcase and the cases below, assume M complete.
13It is sufficient for this asymptotic behaviour to hold in a spatial direction of M if |F | is at most quadratic.

For other generalizations, see formula (5.9) and remark 5.
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Qualitative F Causality Boundary ∂M Some examples

F superquad.

−F at most quad.

No distin-

guishing
No boundary

pp-waves yielding

Sine-Gordon string

and related ones

At most quad. F

(resp.12 |F |)
Strongly

causal

Computable

from theorem 2

(resp. theorem 3)

all below

λ-asymp. quad.13

λ > 1/2

Strongly

causal

1-dimension,

lightlike

plane waves

with some eigenv.

µ1 ≥ λ2/(1 + u2)

for |u| large

λ-asymp. quad.

λ ≤ 1/2

Strongly

causal
Critical

pp-wave with

F (x, u) = λ2x2/(1 + u)2

(for u > 0)

Subquadratic
Globally

hyperbolic

No identif.

in ∂̂M, ∂̌M
Expected

higher dim.

(1) L
n and static

type Mp-waves

(2) plane waves with

−F quadratic

Table 1: Rough properties of the causal boundary of a Mp-wave depending on the qualitative

behaviour of F .

Moreover, if the assumption on the endpoints is done only for the initial ones (i.e.,

{xm(∆m)}m does not lie necessarily in a bounded B) then the same assertion holds for

λ < π2/4.

Proof. For each m, take the variable s̄ = s/∆m, x̄m(s̄) = xm(∆ms̄) and write the corre-

sponding expression (up to a factor 2) as a typical Lagrangian type kinetic minus potential

energy:

1

2

∫ 1

0
| ˙̄xm(s̄)|2ds̄ −

∫ 1

0

(

λ

2
|x̄m(s̄)|2 + (lower degree terms)

)

ds̄.

If the endpoints of the curves were two fixed points, then lemma 3.4 and remark 3.3 in [12]

would yield the first assertion. Otherwise, the result follows by connecting all the endpoints

to a fixed point by means of curves with bounded energy, and applying previous case.

For the last assertion, just apply the first one to the sequence of curves:

x̂m(s) =

{

xm(2s) if 0 < s < ∆m/2

xm(2∆m − 2s) if ∆m/2 < s < ∆m.

Notice that the value of µ in previous result becomes irrelevant (as ǫ > 0), but the

inequality for the leading coefficient λ < π2 or λ < π2/4 (the optimal ones coming from

Wirtinger’s Inequality) must hold. Nevertheless, such a bound for λ can be avoided in
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the following cases. In particular, the results are stated with µ = k = 0 without loss of

generality.

Corollary 2. Let M be a Riemannian manifold and x : [0,∆∞) → M a piecewise smooth

curve with ∆∞ < ∞ and infinite energy. Then, for A∆ as in (7.13):

lim
∆ր∆∞

A∆ =

∫ ∆∞

0
|ẋ(s)|2ds − R

∫ ∆∞

0
|x(s)|2ds = ∞.

Even more, for any K > 0

lim
∆ր∆∞

(

A∆ − K|x∆|2
)

= ∞.

Proof. For δ ∈ (0,∆∞), put

xδ(s̄) = x (δ + (∆ − δ)s̄) ∀s̄ ∈ [0, 1]

and

A∆ = Aδ +

∫ ∆

δ
|ẋ(s)|2ds − R

∫ ∆

δ
|x(s)|2ds

= Aδ +
1

∆ − δ

∫ 1

0
|ẋδ(s̄)|2ds̄ − (∆ − δ)R

∫ 1

0
|xδ(s̄)|2ds̄

≥ Aδ +
1

∆∞ − δ

∫ 1

0
|ẋδ(s̄)|2ds̄ − (∆∞ − δ)R

∫ 1

0
|xδ(s̄)|2ds̄.

Thus, the first assertion follows by taking δ close enough to ∆∞ in order to apply theorem 7

(with ∆m ≡ 1), i.e., ∆∞ − δ < Min{1, π2/4R}.
For the last part, exploiting that R,K > 0 are arbitrary, it is enough to check that

∫ ∆
0 |ẋ(s)|2ds − K|x∆|2 is lower bounded for any K > 0. Notice that, for 0 < ∆0 < ∆:

(|x∆| − |x∆0
|)2 ≤

(
∫ ∆

∆0

|ẋ(s)|ds

)2

≤ (∆ − ∆0)

∫ ∆

∆0

|ẋ(s)|2ds ≤ (∆∞ − ∆0)

∫ ∆

∆0

|ẋ(s)|2ds.

Thus, the result follows easily by taking ∆0 so that ∆∞ − ∆0 < 1/2K.

Proposition 8. Let M be a Riemannian manifold and R1 ≥ 0, R2 ∈ R, 0 < ǫ < 2. There

exists δ > 0, which can be taken δ = ∞ if R1 = 0, such that
∫ ∆

0
|ẏ(s)|2ds −

∫ ∆

0

(

R1|y(s)|2 + R2|y(s)|2−ǫ
)

ds > 0

for all ∆ ∈ (0, δ), y ∈ C(x0, x̄0;∆) and x0, x̄0 ∈ M .

Proof. For simplicity, the proof will be carried out with R2 = 0, being obvious the extension

to the case R2 6= 0. First, putting ỹ(s̄) = y(∆s̄):

∆

∫ ∆

0
|ẏ(s)|2ds − π2

2∆

∫ ∆

0
|y(s)|2ds =

∫ 1

0
| ˙̃y(s̄)|2ds̄ − π2

2

∫ 1

0
|ỹ(s̄)|2ds̄ ≥ 0,

the latter by Wirtinger’s inequality. Thus,

R1

∫ ∆

0
|y(s)|2ds ≤ 2R1∆

2

π2

∫ ∆

0
|ẏ(s)|2ds,

and the required inequality follows obviously if δ ≤ π/
√

2R1.

– 39 –



J
H
E
P
0
3
(
2
0
0
8
)
0
3
6

References
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[22] A. Garćıa-Parrado and J.M.M. Senovilla, Causal relationship: a new tool for the causal

characterization of Lorentzian manifolds, Class. and Quant. Grav. 20 (2003) 625

[gr-qc/0207110].
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